Automated Sparse Analytical Jacobians

In many cases where you have large stiff differential equations, getting a sparse Jacobian can be essential for performance. In this tutorial we will show how to use modelingtoolkitize to regenerate an ODEProblem code with the analytical solution to the sparse Jacobian, along with the sparsity pattern required by DifferentialEquations.jl's solvers to specialize the solving process.

First let's start out with an implementation of the 2-dimensional Brusselator partial differential equation discretized using finite differences:

using DifferentialEquations, ModelingToolkit

const N = 32
const xyd_brusselator = range(0,stop=1,length=N)
brusselator_f(x, y, t) = (((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) * (t >= 1.1) * 5.
limit(a, N) = a == N+1 ? 1 : a == 0 ? N : a
function brusselator_2d_loop(du, u, p, t)
A, B, alpha, dx = p
alpha = alpha/dx^2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N)
du[i,j,1] = alpha*(u[im1,j,1] + u[ip1,j,1] + u[i,jp1,1] + u[i,jm1,1] - 4u[i,j,1]) +
B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] + brusselator_f(x, y, t)
du[i,j,2] = alpha*(u[im1,j,2] + u[ip1,j,2] + u[i,jp1,2] + u[i,jm1,2] - 4u[i,j,2]) +
A*u[i,j,1] - u[i,j,1]^2*u[i,j,2]
end
end
p = (3.4, 1., 10., step(xyd_brusselator))

function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I,1] = 22*(y*(1-y))^(3/2)
u[I,2] = 27*(x*(1-x))^(3/2)
end
u
end
u0 = init_brusselator_2d(xyd_brusselator)
prob = ODEProblem(brusselator_2d_loop,u0,(0.,11.5),p)
ODEProblem with uType Array{Float64, 3} and tType Float64. In-place: true
timespan: (0.0, 11.5)
u0: 32×32×2 Array{Float64, 3}:
[:, :, 1] =
0.0  0.121344  0.326197  0.568534  …  0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534  …  0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
⋮                                  ⋱                      ⋮
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534  …  0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534  …  0.568534  0.326197  0.121344  0.0
0.0  0.121344  0.326197  0.568534     0.568534  0.326197  0.121344  0.0

[:, :, 2] =
0.0       0.0       0.0       0.0       …  0.0       0.0       0.0
0.148923  0.148923  0.148923  0.148923     0.148923  0.148923  0.148923
0.400332  0.400332  0.400332  0.400332     0.400332  0.400332  0.400332
0.697746  0.697746  0.697746  0.697746     0.697746  0.697746  0.697746
1.01722   1.01722   1.01722   1.01722      1.01722   1.01722   1.01722
1.34336   1.34336   1.34336   1.34336   …  1.34336   1.34336   1.34336
1.66501   1.66501   1.66501   1.66501      1.66501   1.66501   1.66501
1.97352   1.97352   1.97352   1.97352      1.97352   1.97352   1.97352
2.26207   2.26207   2.26207   2.26207      2.26207   2.26207   2.26207
2.52509   2.52509   2.52509   2.52509      2.52509   2.52509   2.52509
⋮                                       ⋱            ⋮
2.26207   2.26207   2.26207   2.26207      2.26207   2.26207   2.26207
1.97352   1.97352   1.97352   1.97352      1.97352   1.97352   1.97352
1.66501   1.66501   1.66501   1.66501   …  1.66501   1.66501   1.66501
1.34336   1.34336   1.34336   1.34336      1.34336   1.34336   1.34336
1.01722   1.01722   1.01722   1.01722      1.01722   1.01722   1.01722
0.697746  0.697746  0.697746  0.697746     0.697746  0.697746  0.697746
0.400332  0.400332  0.400332  0.400332     0.400332  0.400332  0.400332
0.148923  0.148923  0.148923  0.148923  …  0.148923  0.148923  0.148923
0.0       0.0       0.0       0.0          0.0       0.0       0.0

Now let's use modelingtoolkitize to generate the symbolic version:

sys = modelingtoolkitize(prob)

\begin{align} \frac{dx1(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x1}\left( t \right) + \mathrm{x2}\left( t \right) + \mathrm{x{3 2}}\left( t \right) + \mathrm{x{3 3}}\left( t \right) + \mathrm{x{9 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x1}\left( t \right) \right)^{2} \mathrm{x{1 0 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x1}\left( t \right) \ \frac{dx2(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x2}\left( t \right) + \mathrm{x1}\left( t \right) + \mathrm{x3}\left( t \right) + \mathrm{x{3 4}}\left( t \right) + \mathrm{x{9 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x2}\left( t \right) \right)^{2} \mathrm{x{1 0 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x2}\left( t \right) \ \frac{dx3(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x3}\left( t \right) + \mathrm{x2}\left( t \right) + \mathrm{x{3 5}}\left( t \right) + \mathrm{x4}\left( t \right) + \mathrm{x{9 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x3}\left( t \right) \right)^{2} \mathrm{x{1 0 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x3}\left( t \right) \ \frac{dx4(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x4}\left( t \right) + \mathrm{x3}\left( t \right) + \mathrm{x{3 6}}\left( t \right) + \mathrm{x5}\left( t \right) + \mathrm{x{9 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x4}\left( t \right) \right)^{2} \mathrm{x{1 0 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x4}\left( t \right) \ \frac{dx5(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x5}\left( t \right) + \mathrm{x{3 7}}\left( t \right) + \mathrm{x4}\left( t \right) + \mathrm{x6}\left( t \right) + \mathrm{x{9 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x5}\left( t \right) \right)^{2} \mathrm{x{1 0 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x5}\left( t \right) \ \frac{dx6(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x6}\left( t \right) + \mathrm{x{3 8}}\left( t \right) + \mathrm{x5}\left( t \right) + \mathrm{x7}\left( t \right) + \mathrm{x{9 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x6}\left( t \right) \right)^{2} \mathrm{x{1 0 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x6}\left( t \right) \ \frac{dx7(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x7}\left( t \right) + \mathrm{x{3 9}}\left( t \right) + \mathrm{x6}\left( t \right) + \mathrm{x8}\left( t \right) + \mathrm{x{9 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x7}\left( t \right) \right)^{2} \mathrm{x{1 0 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x7}\left( t \right) \ \frac{dx8(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x8}\left( t \right) + \mathrm{x{1 0 0 0}}\left( t \right) + \mathrm{x{4 0}}\left( t \right) + \mathrm{x7}\left( t \right) + \mathrm{x9}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x8}\left( t \right) \right)^{2} \mathrm{x{1 0 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x8}\left( t \right) \ \frac{dx9(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x9}\left( t \right) + \mathrm{x{1 0}}\left( t \right) + \mathrm{x{1 0 0 1}}\left( t \right) + \mathrm{x{4 1}}\left( t \right) + \mathrm{x8}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x9}\left( t \right) \right)^{2} \mathrm{x{1 0 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x9}\left( t \right) \ \frac{dx{1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0}}\left( t \right) + \mathrm{x{1 0 0 2}}\left( t \right) + \mathrm{x{1 1}}\left( t \right) + \mathrm{x{4 2}}\left( t \right) + \mathrm{x9}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0}}\left( t \right) \ \frac{dx{1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1}}\left( t \right) + \mathrm{x{1 0}}\left( t \right) + \mathrm{x{1 0 0 3}}\left( t \right) + \mathrm{x{1 2}}\left( t \right) + \mathrm{x{4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1}}\left( t \right) \ \frac{dx{1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2}}\left( t \right) + \mathrm{x{1 0 0 4}}\left( t \right) + \mathrm{x{1 1}}\left( t \right) + \mathrm{x{1 3}}\left( t \right) + \mathrm{x{4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2}}\left( t \right) \ \frac{dx{1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3}}\left( t \right) + \mathrm{x{1 0 0 5}}\left( t \right) + \mathrm{x{1 2}}\left( t \right) + \mathrm{x{1 4}}\left( t \right) + \mathrm{x{4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3}}\left( t \right) \ \frac{dx{1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4}}\left( t \right) + \mathrm{x{1 0 0 6}}\left( t \right) + \mathrm{x{1 3}}\left( t \right) + \mathrm{x{1 5}}\left( t \right) + \mathrm{x{4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4}}\left( t \right) \ \frac{dx{1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5}}\left( t \right) + \mathrm{x{1 0 0 7}}\left( t \right) + \mathrm{x{1 4}}\left( t \right) + \mathrm{x{1 6}}\left( t \right) + \mathrm{x{4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5}}\left( t \right) \ \frac{dx{1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6}}\left( t \right) + \mathrm{x{1 0 0 8}}\left( t \right) + \mathrm{x{1 5}}\left( t \right) + \mathrm{x{1 7}}\left( t \right) + \mathrm{x{4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6}}\left( t \right) \ \frac{dx{1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7}}\left( t \right) + \mathrm{x{1 0 0 9}}\left( t \right) + \mathrm{x{1 6}}\left( t \right) + \mathrm{x{1 8}}\left( t \right) + \mathrm{x{4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7}}\left( t \right) \ \frac{dx{1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8}}\left( t \right) + \mathrm{x{1 0 1 0}}\left( t \right) + \mathrm{x{1 7}}\left( t \right) + \mathrm{x{1 9}}\left( t \right) + \mathrm{x{5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8}}\left( t \right) \ \frac{dx{1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9}}\left( t \right) + \mathrm{x{1 0 1 1}}\left( t \right) + \mathrm{x{1 8}}\left( t \right) + \mathrm{x{2 0}}\left( t \right) + \mathrm{x{5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9}}\left( t \right) \ \frac{dx{2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0}}\left( t \right) + \mathrm{x{1 0 1 2}}\left( t \right) + \mathrm{x{1 9}}\left( t \right) + \mathrm{x{2 1}}\left( t \right) + \mathrm{x{5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0}}\left( t \right) \ \frac{dx{2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1}}\left( t \right) + \mathrm{x{1 0 1 3}}\left( t \right) + \mathrm{x{2 0}}\left( t \right) + \mathrm{x{2 2}}\left( t \right) + \mathrm{x{5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1}}\left( t \right) \ \frac{dx{2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2}}\left( t \right) + \mathrm{x{1 0 1 4}}\left( t \right) + \mathrm{x{2 1}}\left( t \right) + \mathrm{x{2 3}}\left( t \right) + \mathrm{x{5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2}}\left( t \right) \ \frac{dx{2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3}}\left( t \right) + \mathrm{x{1 0 1 5}}\left( t \right) + \mathrm{x{2 2}}\left( t \right) + \mathrm{x{2 4}}\left( t \right) + \mathrm{x{5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3}}\left( t \right) \ \frac{dx{2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4}}\left( t \right) + \mathrm{x{1 0 1 6}}\left( t \right) + \mathrm{x{2 3}}\left( t \right) + \mathrm{x{2 5}}\left( t \right) + \mathrm{x{5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4}}\left( t \right) \ \frac{dx{2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5}}\left( t \right) + \mathrm{x{1 0 1 7}}\left( t \right) + \mathrm{x{2 4}}\left( t \right) + \mathrm{x{2 6}}\left( t \right) + \mathrm{x{5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5}}\left( t \right) \ \frac{dx{2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6}}\left( t \right) + \mathrm{x{1 0 1 8}}\left( t \right) + \mathrm{x{2 5}}\left( t \right) + \mathrm{x{2 7}}\left( t \right) + \mathrm{x{5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6}}\left( t \right) \ \frac{dx{2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7}}\left( t \right) + \mathrm{x{1 0 1 9}}\left( t \right) + \mathrm{x{2 6}}\left( t \right) + \mathrm{x{2 8}}\left( t \right) + \mathrm{x{5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7}}\left( t \right) \ \frac{dx{2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8}}\left( t \right) + \mathrm{x{1 0 2 0}}\left( t \right) + \mathrm{x{2 7}}\left( t \right) + \mathrm{x{2 9}}\left( t \right) + \mathrm{x{6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8}}\left( t \right) \ \frac{dx{2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9}}\left( t \right) + \mathrm{x{1 0 2 1}}\left( t \right) + \mathrm{x{2 8}}\left( t \right) + \mathrm{x{3 0}}\left( t \right) + \mathrm{x{6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9}}\left( t \right) \ \frac{dx{3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0}}\left( t \right) + \mathrm{x{1 0 2 2}}\left( t \right) + \mathrm{x{2 9}}\left( t \right) + \mathrm{x{3 1}}\left( t \right) + \mathrm{x{6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0}}\left( t \right) \ \frac{dx{3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1}}\left( t \right) + \mathrm{x{1 0 2 3}}\left( t \right) + \mathrm{x{3 0}}\left( t \right) + \mathrm{x{3 2}}\left( t \right) + \mathrm{x{6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1}}\left( t \right) \ \frac{dx{3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2}}\left( t \right) + \mathrm{x1}\left( t \right) + \mathrm{x{1 0 2 4}}\left( t \right) + \mathrm{x{3 1}}\left( t \right) + \mathrm{x{6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2}}\left( t \right) \ \frac{dx{3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3}}\left( t \right) + \mathrm{x1}\left( t \right) + \mathrm{x{3 4}}\left( t \right) + \mathrm{x{6 4}}\left( t \right) + \mathrm{x{6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3}}\left( t \right) \ \frac{dx{3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4}}\left( t \right) + \mathrm{x2}\left( t \right) + \mathrm{x{3 3}}\left( t \right) + \mathrm{x{3 5}}\left( t \right) + \mathrm{x{6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4}}\left( t \right) \ \frac{dx{3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5}}\left( t \right) + \mathrm{x3}\left( t \right) + \mathrm{x{3 4}}\left( t \right) + \mathrm{x{3 6}}\left( t \right) + \mathrm{x{6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5}}\left( t \right) \ \frac{dx{3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6}}\left( t \right) + \mathrm{x{3 5}}\left( t \right) + \mathrm{x{3 7}}\left( t \right) + \mathrm{x4}\left( t \right) + \mathrm{x{6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6}}\left( t \right) \ \frac{dx{3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7}}\left( t \right) + \mathrm{x{3 6}}\left( t \right) + \mathrm{x{3 8}}\left( t \right) + \mathrm{x5}\left( t \right) + \mathrm{x{6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7}}\left( t \right) \ \frac{dx{3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8}}\left( t \right) + \mathrm{x{3 7}}\left( t \right) + \mathrm{x{3 9}}\left( t \right) + \mathrm{x6}\left( t \right) + \mathrm{x{7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8}}\left( t \right) \ \frac{dx{3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9}}\left( t \right) + \mathrm{x{3 8}}\left( t \right) + \mathrm{x{4 0}}\left( t \right) + \mathrm{x7}\left( t \right) + \mathrm{x{7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9}}\left( t \right) \ \frac{dx{4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0}}\left( t \right) + \mathrm{x{3 9}}\left( t \right) + \mathrm{x{4 1}}\left( t \right) + \mathrm{x{7 2}}\left( t \right) + \mathrm{x8}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0}}\left( t \right) \ \frac{dx{4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1}}\left( t \right) + \mathrm{x{4 0}}\left( t \right) + \mathrm{x{4 2}}\left( t \right) + \mathrm{x{7 3}}\left( t \right) + \mathrm{x9}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1}}\left( t \right) \ \frac{dx{4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2}}\left( t \right) + \mathrm{x{1 0}}\left( t \right) + \mathrm{x{4 1}}\left( t \right) + \mathrm{x{4 3}}\left( t \right) + \mathrm{x{7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2}}\left( t \right) \ \frac{dx{4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3}}\left( t \right) + \mathrm{x{1 1}}\left( t \right) + \mathrm{x{4 2}}\left( t \right) + \mathrm{x{4 4}}\left( t \right) + \mathrm{x{7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3}}\left( t \right) \ \frac{dx{4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4}}\left( t \right) + \mathrm{x{1 2}}\left( t \right) + \mathrm{x{4 3}}\left( t \right) + \mathrm{x{4 5}}\left( t \right) + \mathrm{x{7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4}}\left( t \right) \ \frac{dx{4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5}}\left( t \right) + \mathrm{x{1 3}}\left( t \right) + \mathrm{x{4 4}}\left( t \right) + \mathrm{x{4 6}}\left( t \right) + \mathrm{x{7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5}}\left( t \right) \ \frac{dx{4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6}}\left( t \right) + \mathrm{x{1 4}}\left( t \right) + \mathrm{x{4 5}}\left( t \right) + \mathrm{x{4 7}}\left( t \right) + \mathrm{x{7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6}}\left( t \right) \ \frac{dx{4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7}}\left( t \right) + \mathrm{x{1 5}}\left( t \right) + \mathrm{x{4 6}}\left( t \right) + \mathrm{x{4 8}}\left( t \right) + \mathrm{x{7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7}}\left( t \right) \ \frac{dx{4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8}}\left( t \right) + \mathrm{x{1 6}}\left( t \right) + \mathrm{x{4 7}}\left( t \right) + \mathrm{x{4 9}}\left( t \right) + \mathrm{x{8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8}}\left( t \right) \ \frac{dx{4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9}}\left( t \right) + \mathrm{x{1 7}}\left( t \right) + \mathrm{x{4 8}}\left( t \right) + \mathrm{x{5 0}}\left( t \right) + \mathrm{x{8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9}}\left( t \right) \ \frac{dx{5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0}}\left( t \right) + \mathrm{x{1 8}}\left( t \right) + \mathrm{x{4 9}}\left( t \right) + \mathrm{x{5 1}}\left( t \right) + \mathrm{x{8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0}}\left( t \right) \ \frac{dx{5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1}}\left( t \right) + \mathrm{x{1 9}}\left( t \right) + \mathrm{x{5 0}}\left( t \right) + \mathrm{x{5 2}}\left( t \right) + \mathrm{x{8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1}}\left( t \right) \ \frac{dx{5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2}}\left( t \right) + \mathrm{x{2 0}}\left( t \right) + \mathrm{x{5 1}}\left( t \right) + \mathrm{x{5 3}}\left( t \right) + \mathrm{x{8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2}}\left( t \right) \ \frac{dx{5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3}}\left( t \right) + \mathrm{x{2 1}}\left( t \right) + \mathrm{x{5 2}}\left( t \right) + \mathrm{x{5 4}}\left( t \right) + \mathrm{x{8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3}}\left( t \right) \ \frac{dx{5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4}}\left( t \right) + \mathrm{x{2 2}}\left( t \right) + \mathrm{x{5 3}}\left( t \right) + \mathrm{x{5 5}}\left( t \right) + \mathrm{x{8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4}}\left( t \right) \ \frac{dx{5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5}}\left( t \right) + \mathrm{x{2 3}}\left( t \right) + \mathrm{x{5 4}}\left( t \right) + \mathrm{x{5 6}}\left( t \right) + \mathrm{x{8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5}}\left( t \right) \ \frac{dx{5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6}}\left( t \right) + \mathrm{x{2 4}}\left( t \right) + \mathrm{x{5 5}}\left( t \right) + \mathrm{x{5 7}}\left( t \right) + \mathrm{x{8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6}}\left( t \right) \ \frac{dx{5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7}}\left( t \right) + \mathrm{x{2 5}}\left( t \right) + \mathrm{x{5 6}}\left( t \right) + \mathrm{x{5 8}}\left( t \right) + \mathrm{x{8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7}}\left( t \right) \ \frac{dx{5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8}}\left( t \right) + \mathrm{x{2 6}}\left( t \right) + \mathrm{x{5 7}}\left( t \right) + \mathrm{x{5 9}}\left( t \right) + \mathrm{x{9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8}}\left( t \right) \ \frac{dx{5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9}}\left( t \right) + \mathrm{x{2 7}}\left( t \right) + \mathrm{x{5 8}}\left( t \right) + \mathrm{x{6 0}}\left( t \right) + \mathrm{x{9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9}}\left( t \right) \ \frac{dx{6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0}}\left( t \right) + \mathrm{x{2 8}}\left( t \right) + \mathrm{x{5 9}}\left( t \right) + \mathrm{x{6 1}}\left( t \right) + \mathrm{x{9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0}}\left( t \right) \ \frac{dx{6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1}}\left( t \right) + \mathrm{x{2 9}}\left( t \right) + \mathrm{x{6 0}}\left( t \right) + \mathrm{x{6 2}}\left( t \right) + \mathrm{x{9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1}}\left( t \right) \ \frac{dx{6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2}}\left( t \right) + \mathrm{x{3 0}}\left( t \right) + \mathrm{x{6 1}}\left( t \right) + \mathrm{x{6 3}}\left( t \right) + \mathrm{x{9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2}}\left( t \right) \ \frac{dx{6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3}}\left( t \right) + \mathrm{x{3 1}}\left( t \right) + \mathrm{x{6 2}}\left( t \right) + \mathrm{x{6 4}}\left( t \right) + \mathrm{x{9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3}}\left( t \right) \ \frac{dx{6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4}}\left( t \right) + \mathrm{x{3 2}}\left( t \right) + \mathrm{x{3 3}}\left( t \right) + \mathrm{x{6 3}}\left( t \right) + \mathrm{x{9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4}}\left( t \right) \ \frac{dx{6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5}}\left( t \right) + \mathrm{x{3 3}}\left( t \right) + \mathrm{x{6 6}}\left( t \right) + \mathrm{x{9 6}}\left( t \right) + \mathrm{x{9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5}}\left( t \right) \ \frac{dx{6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6}}\left( t \right) + \mathrm{x{3 4}}\left( t \right) + \mathrm{x{6 5}}\left( t \right) + \mathrm{x{6 7}}\left( t \right) + \mathrm{x{9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6}}\left( t \right) \ \frac{dx{6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7}}\left( t \right) + \mathrm{x{3 5}}\left( t \right) + \mathrm{x{6 6}}\left( t \right) + \mathrm{x{6 8}}\left( t \right) + \mathrm{x{9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7}}\left( t \right) \ \frac{dx{6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8}}\left( t \right) + \mathrm{x{1 0 0}}\left( t \right) + \mathrm{x{3 6}}\left( t \right) + \mathrm{x{6 7}}\left( t \right) + \mathrm{x{6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8}}\left( t \right) \ \frac{dx{6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9}}\left( t \right) + \mathrm{x{1 0 1}}\left( t \right) + \mathrm{x{3 7}}\left( t \right) + \mathrm{x{6 8}}\left( t \right) + \mathrm{x{7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9}}\left( t \right) \ \frac{dx{7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0}}\left( t \right) + \mathrm{x{1 0 2}}\left( t \right) + \mathrm{x{3 8}}\left( t \right) + \mathrm{x{6 9}}\left( t \right) + \mathrm{x{7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0}}\left( t \right) \ \frac{dx{7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1}}\left( t \right) + \mathrm{x{1 0 3}}\left( t \right) + \mathrm{x{3 9}}\left( t \right) + \mathrm{x{7 0}}\left( t \right) + \mathrm{x{7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1}}\left( t \right) \ \frac{dx{7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2}}\left( t \right) + \mathrm{x{1 0 4}}\left( t \right) + \mathrm{x{4 0}}\left( t \right) + \mathrm{x{7 1}}\left( t \right) + \mathrm{x{7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2}}\left( t \right) \ \frac{dx{7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3}}\left( t \right) + \mathrm{x{1 0 5}}\left( t \right) + \mathrm{x{4 1}}\left( t \right) + \mathrm{x{7 2}}\left( t \right) + \mathrm{x{7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3}}\left( t \right) \ \frac{dx{7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4}}\left( t \right) + \mathrm{x{1 0 6}}\left( t \right) + \mathrm{x{4 2}}\left( t \right) + \mathrm{x{7 3}}\left( t \right) + \mathrm{x{7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4}}\left( t \right) \ \frac{dx{7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5}}\left( t \right) + \mathrm{x{1 0 7}}\left( t \right) + \mathrm{x{4 3}}\left( t \right) + \mathrm{x{7 4}}\left( t \right) + \mathrm{x{7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5}}\left( t \right) \ \frac{dx{7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6}}\left( t \right) + \mathrm{x{1 0 8}}\left( t \right) + \mathrm{x{4 4}}\left( t \right) + \mathrm{x{7 5}}\left( t \right) + \mathrm{x{7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6}}\left( t \right) \ \frac{dx{7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7}}\left( t \right) + \mathrm{x{1 0 9}}\left( t \right) + \mathrm{x{4 5}}\left( t \right) + \mathrm{x{7 6}}\left( t \right) + \mathrm{x{7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7}}\left( t \right) \ \frac{dx{7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8}}\left( t \right) + \mathrm{x{1 1 0}}\left( t \right) + \mathrm{x{4 6}}\left( t \right) + \mathrm{x{7 7}}\left( t \right) + \mathrm{x{7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8}}\left( t \right) \ \frac{dx{7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9}}\left( t \right) + \mathrm{x{1 1 1}}\left( t \right) + \mathrm{x{4 7}}\left( t \right) + \mathrm{x{7 8}}\left( t \right) + \mathrm{x{8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9}}\left( t \right) \ \frac{dx{8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0}}\left( t \right) + \mathrm{x{1 1 2}}\left( t \right) + \mathrm{x{4 8}}\left( t \right) + \mathrm{x{7 9}}\left( t \right) + \mathrm{x{8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0}}\left( t \right) \ \frac{dx{8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1}}\left( t \right) + \mathrm{x{1 1 3}}\left( t \right) + \mathrm{x{4 9}}\left( t \right) + \mathrm{x{8 0}}\left( t \right) + \mathrm{x{8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1}}\left( t \right) \ \frac{dx{8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2}}\left( t \right) + \mathrm{x{1 1 4}}\left( t \right) + \mathrm{x{5 0}}\left( t \right) + \mathrm{x{8 1}}\left( t \right) + \mathrm{x{8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2}}\left( t \right) \ \frac{dx{8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3}}\left( t \right) + \mathrm{x{1 1 5}}\left( t \right) + \mathrm{x{5 1}}\left( t \right) + \mathrm{x{8 2}}\left( t \right) + \mathrm{x{8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3}}\left( t \right) \ \frac{dx{8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4}}\left( t \right) + \mathrm{x{1 1 6}}\left( t \right) + \mathrm{x{5 2}}\left( t \right) + \mathrm{x{8 3}}\left( t \right) + \mathrm{x{8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4}}\left( t \right) \ \frac{dx{8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5}}\left( t \right) + \mathrm{x{1 1 7}}\left( t \right) + \mathrm{x{5 3}}\left( t \right) + \mathrm{x{8 4}}\left( t \right) + \mathrm{x{8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5}}\left( t \right) \ \frac{dx{8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6}}\left( t \right) + \mathrm{x{1 1 8}}\left( t \right) + \mathrm{x{5 4}}\left( t \right) + \mathrm{x{8 5}}\left( t \right) + \mathrm{x{8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6}}\left( t \right) \ \frac{dx{8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7}}\left( t \right) + \mathrm{x{1 1 9}}\left( t \right) + \mathrm{x{5 5}}\left( t \right) + \mathrm{x{8 6}}\left( t \right) + \mathrm{x{8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7}}\left( t \right) \ \frac{dx{8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8}}\left( t \right) + \mathrm{x{1 2 0}}\left( t \right) + \mathrm{x{5 6}}\left( t \right) + \mathrm{x{8 7}}\left( t \right) + \mathrm{x{8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8}}\left( t \right) \ \frac{dx{8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9}}\left( t \right) + \mathrm{x{1 2 1}}\left( t \right) + \mathrm{x{5 7}}\left( t \right) + \mathrm{x{8 8}}\left( t \right) + \mathrm{x{9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9}}\left( t \right) \ \frac{dx{9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0}}\left( t \right) + \mathrm{x{1 2 2}}\left( t \right) + \mathrm{x{5 8}}\left( t \right) + \mathrm{x{8 9}}\left( t \right) + \mathrm{x{9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0}}\left( t \right) \ \frac{dx{9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1}}\left( t \right) + \mathrm{x{1 2 3}}\left( t \right) + \mathrm{x{5 9}}\left( t \right) + \mathrm{x{9 0}}\left( t \right) + \mathrm{x{9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1}}\left( t \right) \ \frac{dx{9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2}}\left( t \right) + \mathrm{x{1 2 4}}\left( t \right) + \mathrm{x{6 0}}\left( t \right) + \mathrm{x{9 1}}\left( t \right) + \mathrm{x{9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2}}\left( t \right) \ \frac{dx{9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3}}\left( t \right) + \mathrm{x{1 2 5}}\left( t \right) + \mathrm{x{6 1}}\left( t \right) + \mathrm{x{9 2}}\left( t \right) + \mathrm{x{9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3}}\left( t \right) \ \frac{dx{9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4}}\left( t \right) + \mathrm{x{1 2 6}}\left( t \right) + \mathrm{x{6 2}}\left( t \right) + \mathrm{x{9 3}}\left( t \right) + \mathrm{x{9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4}}\left( t \right) \ \frac{dx{9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5}}\left( t \right) + \mathrm{x{1 2 7}}\left( t \right) + \mathrm{x{6 3}}\left( t \right) + \mathrm{x{9 4}}\left( t \right) + \mathrm{x{9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5}}\left( t \right) \ \frac{dx{9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6}}\left( t \right) + \mathrm{x{1 2 8}}\left( t \right) + \mathrm{x{6 4}}\left( t \right) + \mathrm{x{6 5}}\left( t \right) + \mathrm{x{9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6}}\left( t \right) \ \frac{dx{9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7}}\left( t \right) + \mathrm{x{1 2 8}}\left( t \right) + \mathrm{x{1 2 9}}\left( t \right) + \mathrm{x{6 5}}\left( t \right) + \mathrm{x{9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7}}\left( t \right) \ \frac{dx{9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8}}\left( t \right) + \mathrm{x{1 3 0}}\left( t \right) + \mathrm{x{6 6}}\left( t \right) + \mathrm{x{9 7}}\left( t \right) + \mathrm{x{9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8}}\left( t \right) \ \frac{dx{9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9}}\left( t \right) + \mathrm{x{1 0 0}}\left( t \right) + \mathrm{x{1 3 1}}\left( t \right) + \mathrm{x{6 7}}\left( t \right) + \mathrm{x{9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9}}\left( t \right) \ \frac{dx{1 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0}}\left( t \right) + \mathrm{x{1 0 1}}\left( t \right) + \mathrm{x{1 3 2}}\left( t \right) + \mathrm{x{6 8}}\left( t \right) + \mathrm{x{9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0}}\left( t \right) \ \frac{dx{1 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1}}\left( t \right) + \mathrm{x{1 0 0}}\left( t \right) + \mathrm{x{1 0 2}}\left( t \right) + \mathrm{x{1 3 3}}\left( t \right) + \mathrm{x{6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1}}\left( t \right) \ \frac{dx{1 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2}}\left( t \right) + \mathrm{x{1 0 1}}\left( t \right) + \mathrm{x{1 0 3}}\left( t \right) + \mathrm{x{1 3 4}}\left( t \right) + \mathrm{x{7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2}}\left( t \right) \ \frac{dx{1 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3}}\left( t \right) + \mathrm{x{1 0 2}}\left( t \right) + \mathrm{x{1 0 4}}\left( t \right) + \mathrm{x{1 3 5}}\left( t \right) + \mathrm{x{7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 3}}\left( t \right) \ \frac{dx{1 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4}}\left( t \right) + \mathrm{x{1 0 3}}\left( t \right) + \mathrm{x{1 0 5}}\left( t \right) + \mathrm{x{1 3 6}}\left( t \right) + \mathrm{x{7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 4}}\left( t \right) \ \frac{dx{1 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5}}\left( t \right) + \mathrm{x{1 0 4}}\left( t \right) + \mathrm{x{1 0 6}}\left( t \right) + \mathrm{x{1 3 7}}\left( t \right) + \mathrm{x{7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 5}}\left( t \right) \ \frac{dx{1 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6}}\left( t \right) + \mathrm{x{1 0 5}}\left( t \right) + \mathrm{x{1 0 7}}\left( t \right) + \mathrm{x{1 3 8}}\left( t \right) + \mathrm{x{7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 6}}\left( t \right) \ \frac{dx{1 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7}}\left( t \right) + \mathrm{x{1 0 6}}\left( t \right) + \mathrm{x{1 0 8}}\left( t \right) + \mathrm{x{1 3 9}}\left( t \right) + \mathrm{x{7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 7}}\left( t \right) \ \frac{dx{1 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8}}\left( t \right) + \mathrm{x{1 0 7}}\left( t \right) + \mathrm{x{1 0 9}}\left( t \right) + \mathrm{x{1 4 0}}\left( t \right) + \mathrm{x{7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 8}}\left( t \right) \ \frac{dx{1 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9}}\left( t \right) + \mathrm{x{1 0 8}}\left( t \right) + \mathrm{x{1 1 0}}\left( t \right) + \mathrm{x{1 4 1}}\left( t \right) + \mathrm{x{7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 9}}\left( t \right) \ \frac{dx{1 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0}}\left( t \right) + \mathrm{x{1 0 9}}\left( t \right) + \mathrm{x{1 1 1}}\left( t \right) + \mathrm{x{1 4 2}}\left( t \right) + \mathrm{x{7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 0}}\left( t \right) \ \frac{dx{1 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1}}\left( t \right) + \mathrm{x{1 1 0}}\left( t \right) + \mathrm{x{1 1 2}}\left( t \right) + \mathrm{x{1 4 3}}\left( t \right) + \mathrm{x{7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 1}}\left( t \right) \ \frac{dx{1 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2}}\left( t \right) + \mathrm{x{1 1 1}}\left( t \right) + \mathrm{x{1 1 3}}\left( t \right) + \mathrm{x{1 4 4}}\left( t \right) + \mathrm{x{8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 2}}\left( t \right) \ \frac{dx{1 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3}}\left( t \right) + \mathrm{x{1 1 2}}\left( t \right) + \mathrm{x{1 1 4}}\left( t \right) + \mathrm{x{1 4 5}}\left( t \right) + \mathrm{x{8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 3}}\left( t \right) \ \frac{dx{1 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4}}\left( t \right) + \mathrm{x{1 1 3}}\left( t \right) + \mathrm{x{1 1 5}}\left( t \right) + \mathrm{x{1 4 6}}\left( t \right) + \mathrm{x{8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 4}}\left( t \right) \ \frac{dx{1 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5}}\left( t \right) + \mathrm{x{1 1 4}}\left( t \right) + \mathrm{x{1 1 6}}\left( t \right) + \mathrm{x{1 4 7}}\left( t \right) + \mathrm{x{8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 5}}\left( t \right) \ \frac{dx{1 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6}}\left( t \right) + \mathrm{x{1 1 5}}\left( t \right) + \mathrm{x{1 1 7}}\left( t \right) + \mathrm{x{1 4 8}}\left( t \right) + \mathrm{x{8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 6}}\left( t \right) \ \frac{dx{1 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7}}\left( t \right) + \mathrm{x{1 1 6}}\left( t \right) + \mathrm{x{1 1 8}}\left( t \right) + \mathrm{x{1 4 9}}\left( t \right) + \mathrm{x{8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 7}}\left( t \right) \ \frac{dx{1 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8}}\left( t \right) + \mathrm{x{1 1 7}}\left( t \right) + \mathrm{x{1 1 9}}\left( t \right) + \mathrm{x{1 5 0}}\left( t \right) + \mathrm{x{8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 8}}\left( t \right) \ \frac{dx{1 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9}}\left( t \right) + \mathrm{x{1 1 8}}\left( t \right) + \mathrm{x{1 2 0}}\left( t \right) + \mathrm{x{1 5 1}}\left( t \right) + \mathrm{x{8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 1 9}}\left( t \right) \ \frac{dx{1 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0}}\left( t \right) + \mathrm{x{1 1 9}}\left( t \right) + \mathrm{x{1 2 1}}\left( t \right) + \mathrm{x{1 5 2}}\left( t \right) + \mathrm{x{8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 0}}\left( t \right) \ \frac{dx{1 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1}}\left( t \right) + \mathrm{x{1 2 0}}\left( t \right) + \mathrm{x{1 2 2}}\left( t \right) + \mathrm{x{1 5 3}}\left( t \right) + \mathrm{x{8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 1}}\left( t \right) \ \frac{dx{1 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2}}\left( t \right) + \mathrm{x{1 2 1}}\left( t \right) + \mathrm{x{1 2 3}}\left( t \right) + \mathrm{x{1 5 4}}\left( t \right) + \mathrm{x{9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 2}}\left( t \right) \ \frac{dx{1 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3}}\left( t \right) + \mathrm{x{1 2 2}}\left( t \right) + \mathrm{x{1 2 4}}\left( t \right) + \mathrm{x{1 5 5}}\left( t \right) + \mathrm{x{9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 3}}\left( t \right) \ \frac{dx{1 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4}}\left( t \right) + \mathrm{x{1 2 3}}\left( t \right) + \mathrm{x{1 2 5}}\left( t \right) + \mathrm{x{1 5 6}}\left( t \right) + \mathrm{x{9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 4}}\left( t \right) \ \frac{dx{1 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5}}\left( t \right) + \mathrm{x{1 2 4}}\left( t \right) + \mathrm{x{1 2 6}}\left( t \right) + \mathrm{x{1 5 7}}\left( t \right) + \mathrm{x{9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 5}}\left( t \right) \ \frac{dx{1 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6}}\left( t \right) + \mathrm{x{1 2 5}}\left( t \right) + \mathrm{x{1 2 7}}\left( t \right) + \mathrm{x{1 5 8}}\left( t \right) + \mathrm{x{9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 6}}\left( t \right) \ \frac{dx{1 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7}}\left( t \right) + \mathrm{x{1 2 6}}\left( t \right) + \mathrm{x{1 2 8}}\left( t \right) + \mathrm{x{1 5 9}}\left( t \right) + \mathrm{x{9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 7}}\left( t \right) \ \frac{dx{1 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8}}\left( t \right) + \mathrm{x{1 2 7}}\left( t \right) + \mathrm{x{1 6 0}}\left( t \right) + \mathrm{x{9 6}}\left( t \right) + \mathrm{x{9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 8}}\left( t \right) \ \frac{dx{1 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9}}\left( t \right) + \mathrm{x{1 3 0}}\left( t \right) + \mathrm{x{1 6 0}}\left( t \right) + \mathrm{x{1 6 1}}\left( t \right) + \mathrm{x{9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 2 9}}\left( t \right) \ \frac{dx{1 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0}}\left( t \right) + \mathrm{x{1 2 9}}\left( t \right) + \mathrm{x{1 3 1}}\left( t \right) + \mathrm{x{1 6 2}}\left( t \right) + \mathrm{x{9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 0}}\left( t \right) \ \frac{dx{1 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1}}\left( t \right) + \mathrm{x{1 3 0}}\left( t \right) + \mathrm{x{1 3 2}}\left( t \right) + \mathrm{x{1 6 3}}\left( t \right) + \mathrm{x{9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 1}}\left( t \right) \ \frac{dx{1 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2}}\left( t \right) + \mathrm{x{1 0 0}}\left( t \right) + \mathrm{x{1 3 1}}\left( t \right) + \mathrm{x{1 3 3}}\left( t \right) + \mathrm{x{1 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 2}}\left( t \right) \ \frac{dx{1 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3}}\left( t \right) + \mathrm{x{1 0 1}}\left( t \right) + \mathrm{x{1 3 2}}\left( t \right) + \mathrm{x{1 3 4}}\left( t \right) + \mathrm{x{1 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 3}}\left( t \right) \ \frac{dx{1 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4}}\left( t \right) + \mathrm{x{1 0 2}}\left( t \right) + \mathrm{x{1 3 3}}\left( t \right) + \mathrm{x{1 3 5}}\left( t \right) + \mathrm{x{1 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 4}}\left( t \right) \ \frac{dx{1 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5}}\left( t \right) + \mathrm{x{1 0 3}}\left( t \right) + \mathrm{x{1 3 4}}\left( t \right) + \mathrm{x{1 3 6}}\left( t \right) + \mathrm{x{1 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 5}}\left( t \right) \ \frac{dx{1 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6}}\left( t \right) + \mathrm{x{1 0 4}}\left( t \right) + \mathrm{x{1 3 5}}\left( t \right) + \mathrm{x{1 3 7}}\left( t \right) + \mathrm{x{1 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 6}}\left( t \right) \ \frac{dx{1 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7}}\left( t \right) + \mathrm{x{1 0 5}}\left( t \right) + \mathrm{x{1 3 6}}\left( t \right) + \mathrm{x{1 3 8}}\left( t \right) + \mathrm{x{1 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 7}}\left( t \right) \ \frac{dx{1 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8}}\left( t \right) + \mathrm{x{1 0 6}}\left( t \right) + \mathrm{x{1 3 7}}\left( t \right) + \mathrm{x{1 3 9}}\left( t \right) + \mathrm{x{1 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 8}}\left( t \right) \ \frac{dx{1 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9}}\left( t \right) + \mathrm{x{1 0 7}}\left( t \right) + \mathrm{x{1 3 8}}\left( t \right) + \mathrm{x{1 4 0}}\left( t \right) + \mathrm{x{1 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 3 9}}\left( t \right) \ \frac{dx{1 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0}}\left( t \right) + \mathrm{x{1 0 8}}\left( t \right) + \mathrm{x{1 3 9}}\left( t \right) + \mathrm{x{1 4 1}}\left( t \right) + \mathrm{x{1 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 0}}\left( t \right) \ \frac{dx{1 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1}}\left( t \right) + \mathrm{x{1 0 9}}\left( t \right) + \mathrm{x{1 4 0}}\left( t \right) + \mathrm{x{1 4 2}}\left( t \right) + \mathrm{x{1 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 1}}\left( t \right) \ \frac{dx{1 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2}}\left( t \right) + \mathrm{x{1 1 0}}\left( t \right) + \mathrm{x{1 4 1}}\left( t \right) + \mathrm{x{1 4 3}}\left( t \right) + \mathrm{x{1 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 2}}\left( t \right) \ \frac{dx{1 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3}}\left( t \right) + \mathrm{x{1 1 1}}\left( t \right) + \mathrm{x{1 4 2}}\left( t \right) + \mathrm{x{1 4 4}}\left( t \right) + \mathrm{x{1 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 3}}\left( t \right) \ \frac{dx{1 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4}}\left( t \right) + \mathrm{x{1 1 2}}\left( t \right) + \mathrm{x{1 4 3}}\left( t \right) + \mathrm{x{1 4 5}}\left( t \right) + \mathrm{x{1 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 4}}\left( t \right) \ \frac{dx{1 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5}}\left( t \right) + \mathrm{x{1 1 3}}\left( t \right) + \mathrm{x{1 4 4}}\left( t \right) + \mathrm{x{1 4 6}}\left( t \right) + \mathrm{x{1 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 5}}\left( t \right) \ \frac{dx{1 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6}}\left( t \right) + \mathrm{x{1 1 4}}\left( t \right) + \mathrm{x{1 4 5}}\left( t \right) + \mathrm{x{1 4 7}}\left( t \right) + \mathrm{x{1 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 6}}\left( t \right) \ \frac{dx{1 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7}}\left( t \right) + \mathrm{x{1 1 5}}\left( t \right) + \mathrm{x{1 4 6}}\left( t \right) + \mathrm{x{1 4 8}}\left( t \right) + \mathrm{x{1 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 7}}\left( t \right) \ \frac{dx{1 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8}}\left( t \right) + \mathrm{x{1 1 6}}\left( t \right) + \mathrm{x{1 4 7}}\left( t \right) + \mathrm{x{1 4 9}}\left( t \right) + \mathrm{x{1 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 8}}\left( t \right) \ \frac{dx{1 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9}}\left( t \right) + \mathrm{x{1 1 7}}\left( t \right) + \mathrm{x{1 4 8}}\left( t \right) + \mathrm{x{1 5 0}}\left( t \right) + \mathrm{x{1 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 4 9}}\left( t \right) \ \frac{dx{1 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0}}\left( t \right) + \mathrm{x{1 1 8}}\left( t \right) + \mathrm{x{1 4 9}}\left( t \right) + \mathrm{x{1 5 1}}\left( t \right) + \mathrm{x{1 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 0}}\left( t \right) \ \frac{dx{1 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1}}\left( t \right) + \mathrm{x{1 1 9}}\left( t \right) + \mathrm{x{1 5 0}}\left( t \right) + \mathrm{x{1 5 2}}\left( t \right) + \mathrm{x{1 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 1}}\left( t \right) \ \frac{dx{1 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2}}\left( t \right) + \mathrm{x{1 2 0}}\left( t \right) + \mathrm{x{1 5 1}}\left( t \right) + \mathrm{x{1 5 3}}\left( t \right) + \mathrm{x{1 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 2}}\left( t \right) \ \frac{dx{1 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3}}\left( t \right) + \mathrm{x{1 2 1}}\left( t \right) + \mathrm{x{1 5 2}}\left( t \right) + \mathrm{x{1 5 4}}\left( t \right) + \mathrm{x{1 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 3}}\left( t \right) \ \frac{dx{1 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4}}\left( t \right) + \mathrm{x{1 2 2}}\left( t \right) + \mathrm{x{1 5 3}}\left( t \right) + \mathrm{x{1 5 5}}\left( t \right) + \mathrm{x{1 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 4}}\left( t \right) \ \frac{dx{1 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5}}\left( t \right) + \mathrm{x{1 2 3}}\left( t \right) + \mathrm{x{1 5 4}}\left( t \right) + \mathrm{x{1 5 6}}\left( t \right) + \mathrm{x{1 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 5}}\left( t \right) \ \frac{dx{1 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6}}\left( t \right) + \mathrm{x{1 2 4}}\left( t \right) + \mathrm{x{1 5 5}}\left( t \right) + \mathrm{x{1 5 7}}\left( t \right) + \mathrm{x{1 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 6}}\left( t \right) \ \frac{dx{1 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7}}\left( t \right) + \mathrm{x{1 2 5}}\left( t \right) + \mathrm{x{1 5 6}}\left( t \right) + \mathrm{x{1 5 8}}\left( t \right) + \mathrm{x{1 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 7}}\left( t \right) \ \frac{dx{1 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8}}\left( t \right) + \mathrm{x{1 2 6}}\left( t \right) + \mathrm{x{1 5 7}}\left( t \right) + \mathrm{x{1 5 9}}\left( t \right) + \mathrm{x{1 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 8}}\left( t \right) \ \frac{dx{1 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9}}\left( t \right) + \mathrm{x{1 2 7}}\left( t \right) + \mathrm{x{1 5 8}}\left( t \right) + \mathrm{x{1 6 0}}\left( t \right) + \mathrm{x{1 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 5 9}}\left( t \right) \ \frac{dx{1 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0}}\left( t \right) + \mathrm{x{1 2 8}}\left( t \right) + \mathrm{x{1 2 9}}\left( t \right) + \mathrm{x{1 5 9}}\left( t \right) + \mathrm{x{1 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 0}}\left( t \right) \ \frac{dx{1 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1}}\left( t \right) + \mathrm{x{1 2 9}}\left( t \right) + \mathrm{x{1 6 2}}\left( t \right) + \mathrm{x{1 9 2}}\left( t \right) + \mathrm{x{1 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 1}}\left( t \right) \ \frac{dx{1 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2}}\left( t \right) + \mathrm{x{1 3 0}}\left( t \right) + \mathrm{x{1 6 1}}\left( t \right) + \mathrm{x{1 6 3}}\left( t \right) + \mathrm{x{1 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 2}}\left( t \right) \ \frac{dx{1 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3}}\left( t \right) + \mathrm{x{1 3 1}}\left( t \right) + \mathrm{x{1 6 2}}\left( t \right) + \mathrm{x{1 6 4}}\left( t \right) + \mathrm{x{1 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 3}}\left( t \right) \ \frac{dx{1 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4}}\left( t \right) + \mathrm{x{1 3 2}}\left( t \right) + \mathrm{x{1 6 3}}\left( t \right) + \mathrm{x{1 6 5}}\left( t \right) + \mathrm{x{1 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 4}}\left( t \right) \ \frac{dx{1 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5}}\left( t \right) + \mathrm{x{1 3 3}}\left( t \right) + \mathrm{x{1 6 4}}\left( t \right) + \mathrm{x{1 6 6}}\left( t \right) + \mathrm{x{1 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 5}}\left( t \right) \ \frac{dx{1 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6}}\left( t \right) + \mathrm{x{1 3 4}}\left( t \right) + \mathrm{x{1 6 5}}\left( t \right) + \mathrm{x{1 6 7}}\left( t \right) + \mathrm{x{1 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 6}}\left( t \right) \ \frac{dx{1 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7}}\left( t \right) + \mathrm{x{1 3 5}}\left( t \right) + \mathrm{x{1 6 6}}\left( t \right) + \mathrm{x{1 6 8}}\left( t \right) + \mathrm{x{1 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 7}}\left( t \right) \ \frac{dx{1 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8}}\left( t \right) + \mathrm{x{1 3 6}}\left( t \right) + \mathrm{x{1 6 7}}\left( t \right) + \mathrm{x{1 6 9}}\left( t \right) + \mathrm{x{2 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 8}}\left( t \right) \ \frac{dx{1 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9}}\left( t \right) + \mathrm{x{1 3 7}}\left( t \right) + \mathrm{x{1 6 8}}\left( t \right) + \mathrm{x{1 7 0}}\left( t \right) + \mathrm{x{2 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 6 9}}\left( t \right) \ \frac{dx{1 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0}}\left( t \right) + \mathrm{x{1 3 8}}\left( t \right) + \mathrm{x{1 6 9}}\left( t \right) + \mathrm{x{1 7 1}}\left( t \right) + \mathrm{x{2 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 0}}\left( t \right) \ \frac{dx{1 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1}}\left( t \right) + \mathrm{x{1 3 9}}\left( t \right) + \mathrm{x{1 7 0}}\left( t \right) + \mathrm{x{1 7 2}}\left( t \right) + \mathrm{x{2 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 1}}\left( t \right) \ \frac{dx{1 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2}}\left( t \right) + \mathrm{x{1 4 0}}\left( t \right) + \mathrm{x{1 7 1}}\left( t \right) + \mathrm{x{1 7 3}}\left( t \right) + \mathrm{x{2 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 2}}\left( t \right) \ \frac{dx{1 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3}}\left( t \right) + \mathrm{x{1 4 1}}\left( t \right) + \mathrm{x{1 7 2}}\left( t \right) + \mathrm{x{1 7 4}}\left( t \right) + \mathrm{x{2 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 3}}\left( t \right) \ \frac{dx{1 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4}}\left( t \right) + \mathrm{x{1 4 2}}\left( t \right) + \mathrm{x{1 7 3}}\left( t \right) + \mathrm{x{1 7 5}}\left( t \right) + \mathrm{x{2 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 4}}\left( t \right) \ \frac{dx{1 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5}}\left( t \right) + \mathrm{x{1 4 3}}\left( t \right) + \mathrm{x{1 7 4}}\left( t \right) + \mathrm{x{1 7 6}}\left( t \right) + \mathrm{x{2 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 5}}\left( t \right) \ \frac{dx{1 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6}}\left( t \right) + \mathrm{x{1 4 4}}\left( t \right) + \mathrm{x{1 7 5}}\left( t \right) + \mathrm{x{1 7 7}}\left( t \right) + \mathrm{x{2 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 6}}\left( t \right) \ \frac{dx{1 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7}}\left( t \right) + \mathrm{x{1 4 5}}\left( t \right) + \mathrm{x{1 7 6}}\left( t \right) + \mathrm{x{1 7 8}}\left( t \right) + \mathrm{x{2 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 7}}\left( t \right) \ \frac{dx{1 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8}}\left( t \right) + \mathrm{x{1 4 6}}\left( t \right) + \mathrm{x{1 7 7}}\left( t \right) + \mathrm{x{1 7 9}}\left( t \right) + \mathrm{x{2 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 8}}\left( t \right) \ \frac{dx{1 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9}}\left( t \right) + \mathrm{x{1 4 7}}\left( t \right) + \mathrm{x{1 7 8}}\left( t \right) + \mathrm{x{1 8 0}}\left( t \right) + \mathrm{x{2 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 7 9}}\left( t \right) \ \frac{dx{1 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0}}\left( t \right) + \mathrm{x{1 4 8}}\left( t \right) + \mathrm{x{1 7 9}}\left( t \right) + \mathrm{x{1 8 1}}\left( t \right) + \mathrm{x{2 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 0}}\left( t \right) \ \frac{dx{1 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1}}\left( t \right) + \mathrm{x{1 4 9}}\left( t \right) + \mathrm{x{1 8 0}}\left( t \right) + \mathrm{x{1 8 2}}\left( t \right) + \mathrm{x{2 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 1}}\left( t \right) \ \frac{dx{1 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2}}\left( t \right) + \mathrm{x{1 5 0}}\left( t \right) + \mathrm{x{1 8 1}}\left( t \right) + \mathrm{x{1 8 3}}\left( t \right) + \mathrm{x{2 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 2}}\left( t \right) \ \frac{dx{1 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3}}\left( t \right) + \mathrm{x{1 5 1}}\left( t \right) + \mathrm{x{1 8 2}}\left( t \right) + \mathrm{x{1 8 4}}\left( t \right) + \mathrm{x{2 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 3}}\left( t \right) \ \frac{dx{1 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4}}\left( t \right) + \mathrm{x{1 5 2}}\left( t \right) + \mathrm{x{1 8 3}}\left( t \right) + \mathrm{x{1 8 5}}\left( t \right) + \mathrm{x{2 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 4}}\left( t \right) \ \frac{dx{1 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5}}\left( t \right) + \mathrm{x{1 5 3}}\left( t \right) + \mathrm{x{1 8 4}}\left( t \right) + \mathrm{x{1 8 6}}\left( t \right) + \mathrm{x{2 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 5}}\left( t \right) \ \frac{dx{1 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6}}\left( t \right) + \mathrm{x{1 5 4}}\left( t \right) + \mathrm{x{1 8 5}}\left( t \right) + \mathrm{x{1 8 7}}\left( t \right) + \mathrm{x{2 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 6}}\left( t \right) \ \frac{dx{1 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7}}\left( t \right) + \mathrm{x{1 5 5}}\left( t \right) + \mathrm{x{1 8 6}}\left( t \right) + \mathrm{x{1 8 8}}\left( t \right) + \mathrm{x{2 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 7}}\left( t \right) \ \frac{dx{1 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8}}\left( t \right) + \mathrm{x{1 5 6}}\left( t \right) + \mathrm{x{1 8 7}}\left( t \right) + \mathrm{x{1 8 9}}\left( t \right) + \mathrm{x{2 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 8}}\left( t \right) \ \frac{dx{1 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9}}\left( t \right) + \mathrm{x{1 5 7}}\left( t \right) + \mathrm{x{1 8 8}}\left( t \right) + \mathrm{x{1 9 0}}\left( t \right) + \mathrm{x{2 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 8 9}}\left( t \right) \ \frac{dx{1 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0}}\left( t \right) + \mathrm{x{1 5 8}}\left( t \right) + \mathrm{x{1 8 9}}\left( t \right) + \mathrm{x{1 9 1}}\left( t \right) + \mathrm{x{2 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 0}}\left( t \right) \ \frac{dx{1 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1}}\left( t \right) + \mathrm{x{1 5 9}}\left( t \right) + \mathrm{x{1 9 0}}\left( t \right) + \mathrm{x{1 9 2}}\left( t \right) + \mathrm{x{2 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 1}}\left( t \right) \ \frac{dx{1 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2}}\left( t \right) + \mathrm{x{1 6 0}}\left( t \right) + \mathrm{x{1 6 1}}\left( t \right) + \mathrm{x{1 9 1}}\left( t \right) + \mathrm{x{2 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 2}}\left( t \right) \ \frac{dx{1 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3}}\left( t \right) + \mathrm{x{1 6 1}}\left( t \right) + \mathrm{x{1 9 4}}\left( t \right) + \mathrm{x{2 2 4}}\left( t \right) + \mathrm{x{2 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 3}}\left( t \right) \ \frac{dx{1 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4}}\left( t \right) + \mathrm{x{1 6 2}}\left( t \right) + \mathrm{x{1 9 3}}\left( t \right) + \mathrm{x{1 9 5}}\left( t \right) + \mathrm{x{2 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 4}}\left( t \right) \ \frac{dx{1 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5}}\left( t \right) + \mathrm{x{1 6 3}}\left( t \right) + \mathrm{x{1 9 4}}\left( t \right) + \mathrm{x{1 9 6}}\left( t \right) + \mathrm{x{2 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 5}}\left( t \right) \ \frac{dx{1 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6}}\left( t \right) + \mathrm{x{1 6 4}}\left( t \right) + \mathrm{x{1 9 5}}\left( t \right) + \mathrm{x{1 9 7}}\left( t \right) + \mathrm{x{2 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 6}}\left( t \right) \ \frac{dx{1 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7}}\left( t \right) + \mathrm{x{1 6 5}}\left( t \right) + \mathrm{x{1 9 6}}\left( t \right) + \mathrm{x{1 9 8}}\left( t \right) + \mathrm{x{2 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 7}}\left( t \right) \ \frac{dx{1 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8}}\left( t \right) + \mathrm{x{1 6 6}}\left( t \right) + \mathrm{x{1 9 7}}\left( t \right) + \mathrm{x{1 9 9}}\left( t \right) + \mathrm{x{2 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 8}}\left( t \right) \ \frac{dx{1 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9}}\left( t \right) + \mathrm{x{1 6 7}}\left( t \right) + \mathrm{x{1 9 8}}\left( t \right) + \mathrm{x{2 0 0}}\left( t \right) + \mathrm{x{2 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 9 9}}\left( t \right) \ \frac{dx{2 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0}}\left( t \right) + \mathrm{x{1 6 8}}\left( t \right) + \mathrm{x{1 9 9}}\left( t \right) + \mathrm{x{2 0 1}}\left( t \right) + \mathrm{x{2 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 0}}\left( t \right) \ \frac{dx{2 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1}}\left( t \right) + \mathrm{x{1 6 9}}\left( t \right) + \mathrm{x{2 0 0}}\left( t \right) + \mathrm{x{2 0 2}}\left( t \right) + \mathrm{x{2 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 1}}\left( t \right) \ \frac{dx{2 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2}}\left( t \right) + \mathrm{x{1 7 0}}\left( t \right) + \mathrm{x{2 0 1}}\left( t \right) + \mathrm{x{2 0 3}}\left( t \right) + \mathrm{x{2 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 2}}\left( t \right) \ \frac{dx{2 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3}}\left( t \right) + \mathrm{x{1 7 1}}\left( t \right) + \mathrm{x{2 0 2}}\left( t \right) + \mathrm{x{2 0 4}}\left( t \right) + \mathrm{x{2 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 3}}\left( t \right) \ \frac{dx{2 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4}}\left( t \right) + \mathrm{x{1 7 2}}\left( t \right) + \mathrm{x{2 0 3}}\left( t \right) + \mathrm{x{2 0 5}}\left( t \right) + \mathrm{x{2 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 4}}\left( t \right) \ \frac{dx{2 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 5}}\left( t \right) + \mathrm{x{1 7 3}}\left( t \right) + \mathrm{x{2 0 4}}\left( t \right) + \mathrm{x{2 0 6}}\left( t \right) + \mathrm{x{2 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 5}}\left( t \right) \ \frac{dx{2 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 6}}\left( t \right) + \mathrm{x{1 7 4}}\left( t \right) + \mathrm{x{2 0 5}}\left( t \right) + \mathrm{x{2 0 7}}\left( t \right) + \mathrm{x{2 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 6}}\left( t \right) \ \frac{dx{2 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 7}}\left( t \right) + \mathrm{x{1 7 5}}\left( t \right) + \mathrm{x{2 0 6}}\left( t \right) + \mathrm{x{2 0 8}}\left( t \right) + \mathrm{x{2 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 7}}\left( t \right) \ \frac{dx{2 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 8}}\left( t \right) + \mathrm{x{1 7 6}}\left( t \right) + \mathrm{x{2 0 7}}\left( t \right) + \mathrm{x{2 0 9}}\left( t \right) + \mathrm{x{2 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 8}}\left( t \right) \ \frac{dx{2 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 9}}\left( t \right) + \mathrm{x{1 7 7}}\left( t \right) + \mathrm{x{2 0 8}}\left( t \right) + \mathrm{x{2 1 0}}\left( t \right) + \mathrm{x{2 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 0 9}}\left( t \right) \ \frac{dx{2 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 0}}\left( t \right) + \mathrm{x{1 7 8}}\left( t \right) + \mathrm{x{2 0 9}}\left( t \right) + \mathrm{x{2 1 1}}\left( t \right) + \mathrm{x{2 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 0}}\left( t \right) \ \frac{dx{2 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 1}}\left( t \right) + \mathrm{x{1 7 9}}\left( t \right) + \mathrm{x{2 1 0}}\left( t \right) + \mathrm{x{2 1 2}}\left( t \right) + \mathrm{x{2 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 1}}\left( t \right) \ \frac{dx{2 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 2}}\left( t \right) + \mathrm{x{1 8 0}}\left( t \right) + \mathrm{x{2 1 1}}\left( t \right) + \mathrm{x{2 1 3}}\left( t \right) + \mathrm{x{2 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 2}}\left( t \right) \ \frac{dx{2 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 3}}\left( t \right) + \mathrm{x{1 8 1}}\left( t \right) + \mathrm{x{2 1 2}}\left( t \right) + \mathrm{x{2 1 4}}\left( t \right) + \mathrm{x{2 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 3}}\left( t \right) \ \frac{dx{2 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 4}}\left( t \right) + \mathrm{x{1 8 2}}\left( t \right) + \mathrm{x{2 1 3}}\left( t \right) + \mathrm{x{2 1 5}}\left( t \right) + \mathrm{x{2 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 4}}\left( t \right) \ \frac{dx{2 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 5}}\left( t \right) + \mathrm{x{1 8 3}}\left( t \right) + \mathrm{x{2 1 4}}\left( t \right) + \mathrm{x{2 1 6}}\left( t \right) + \mathrm{x{2 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 5}}\left( t \right) \ \frac{dx{2 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 6}}\left( t \right) + \mathrm{x{1 8 4}}\left( t \right) + \mathrm{x{2 1 5}}\left( t \right) + \mathrm{x{2 1 7}}\left( t \right) + \mathrm{x{2 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 6}}\left( t \right) \ \frac{dx{2 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 7}}\left( t \right) + \mathrm{x{1 8 5}}\left( t \right) + \mathrm{x{2 1 6}}\left( t \right) + \mathrm{x{2 1 8}}\left( t \right) + \mathrm{x{2 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 7}}\left( t \right) \ \frac{dx{2 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 8}}\left( t \right) + \mathrm{x{1 8 6}}\left( t \right) + \mathrm{x{2 1 7}}\left( t \right) + \mathrm{x{2 1 9}}\left( t \right) + \mathrm{x{2 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 8}}\left( t \right) \ \frac{dx{2 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 1 9}}\left( t \right) + \mathrm{x{1 8 7}}\left( t \right) + \mathrm{x{2 1 8}}\left( t \right) + \mathrm{x{2 2 0}}\left( t \right) + \mathrm{x{2 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 1 9}}\left( t \right) \ \frac{dx{2 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 0}}\left( t \right) + \mathrm{x{1 8 8}}\left( t \right) + \mathrm{x{2 1 9}}\left( t \right) + \mathrm{x{2 2 1}}\left( t \right) + \mathrm{x{2 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 0}}\left( t \right) \ \frac{dx{2 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 1}}\left( t \right) + \mathrm{x{1 8 9}}\left( t \right) + \mathrm{x{2 2 0}}\left( t \right) + \mathrm{x{2 2 2}}\left( t \right) + \mathrm{x{2 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 1}}\left( t \right) \ \frac{dx{2 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 2}}\left( t \right) + \mathrm{x{1 9 0}}\left( t \right) + \mathrm{x{2 2 1}}\left( t \right) + \mathrm{x{2 2 3}}\left( t \right) + \mathrm{x{2 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 2}}\left( t \right) \ \frac{dx{2 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 3}}\left( t \right) + \mathrm{x{1 9 1}}\left( t \right) + \mathrm{x{2 2 2}}\left( t \right) + \mathrm{x{2 2 4}}\left( t \right) + \mathrm{x{2 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 3}}\left( t \right) \ \frac{dx{2 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 4}}\left( t \right) + \mathrm{x{1 9 2}}\left( t \right) + \mathrm{x{1 9 3}}\left( t \right) + \mathrm{x{2 2 3}}\left( t \right) + \mathrm{x{2 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 4}}\left( t \right) \ \frac{dx{2 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 5}}\left( t \right) + \mathrm{x{1 9 3}}\left( t \right) + \mathrm{x{2 2 6}}\left( t \right) + \mathrm{x{2 5 6}}\left( t \right) + \mathrm{x{2 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 5}}\left( t \right) \ \frac{dx{2 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 6}}\left( t \right) + \mathrm{x{1 9 4}}\left( t \right) + \mathrm{x{2 2 5}}\left( t \right) + \mathrm{x{2 2 7}}\left( t \right) + \mathrm{x{2 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 6}}\left( t \right) \ \frac{dx{2 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 7}}\left( t \right) + \mathrm{x{1 9 5}}\left( t \right) + \mathrm{x{2 2 6}}\left( t \right) + \mathrm{x{2 2 8}}\left( t \right) + \mathrm{x{2 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 7}}\left( t \right) \ \frac{dx{2 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 8}}\left( t \right) + \mathrm{x{1 9 6}}\left( t \right) + \mathrm{x{2 2 7}}\left( t \right) + \mathrm{x{2 2 9}}\left( t \right) + \mathrm{x{2 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 8}}\left( t \right) \ \frac{dx{2 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 2 9}}\left( t \right) + \mathrm{x{1 9 7}}\left( t \right) + \mathrm{x{2 2 8}}\left( t \right) + \mathrm{x{2 3 0}}\left( t \right) + \mathrm{x{2 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 2 9}}\left( t \right) \ \frac{dx{2 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 0}}\left( t \right) + \mathrm{x{1 9 8}}\left( t \right) + \mathrm{x{2 2 9}}\left( t \right) + \mathrm{x{2 3 1}}\left( t \right) + \mathrm{x{2 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 0}}\left( t \right) \ \frac{dx{2 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 1}}\left( t \right) + \mathrm{x{1 9 9}}\left( t \right) + \mathrm{x{2 3 0}}\left( t \right) + \mathrm{x{2 3 2}}\left( t \right) + \mathrm{x{2 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 1}}\left( t \right) \ \frac{dx{2 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 2}}\left( t \right) + \mathrm{x{2 0 0}}\left( t \right) + \mathrm{x{2 3 1}}\left( t \right) + \mathrm{x{2 3 3}}\left( t \right) + \mathrm{x{2 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 2}}\left( t \right) \ \frac{dx{2 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 3}}\left( t \right) + \mathrm{x{2 0 1}}\left( t \right) + \mathrm{x{2 3 2}}\left( t \right) + \mathrm{x{2 3 4}}\left( t \right) + \mathrm{x{2 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 3}}\left( t \right) \ \frac{dx{2 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 4}}\left( t \right) + \mathrm{x{2 0 2}}\left( t \right) + \mathrm{x{2 3 3}}\left( t \right) + \mathrm{x{2 3 5}}\left( t \right) + \mathrm{x{2 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 4}}\left( t \right) \ \frac{dx{2 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 5}}\left( t \right) + \mathrm{x{2 0 3}}\left( t \right) + \mathrm{x{2 3 4}}\left( t \right) + \mathrm{x{2 3 6}}\left( t \right) + \mathrm{x{2 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 5}}\left( t \right) \ \frac{dx{2 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 6}}\left( t \right) + \mathrm{x{2 0 4}}\left( t \right) + \mathrm{x{2 3 5}}\left( t \right) + \mathrm{x{2 3 7}}\left( t \right) + \mathrm{x{2 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 6}}\left( t \right) \ \frac{dx{2 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 7}}\left( t \right) + \mathrm{x{2 0 5}}\left( t \right) + \mathrm{x{2 3 6}}\left( t \right) + \mathrm{x{2 3 8}}\left( t \right) + \mathrm{x{2 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 7}}\left( t \right) \ \frac{dx{2 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 8}}\left( t \right) + \mathrm{x{2 0 6}}\left( t \right) + \mathrm{x{2 3 7}}\left( t \right) + \mathrm{x{2 3 9}}\left( t \right) + \mathrm{x{2 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 8}}\left( t \right) \ \frac{dx{2 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 3 9}}\left( t \right) + \mathrm{x{2 0 7}}\left( t \right) + \mathrm{x{2 3 8}}\left( t \right) + \mathrm{x{2 4 0}}\left( t \right) + \mathrm{x{2 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 3 9}}\left( t \right) \ \frac{dx{2 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 0}}\left( t \right) + \mathrm{x{2 0 8}}\left( t \right) + \mathrm{x{2 3 9}}\left( t \right) + \mathrm{x{2 4 1}}\left( t \right) + \mathrm{x{2 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 0}}\left( t \right) \ \frac{dx{2 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 1}}\left( t \right) + \mathrm{x{2 0 9}}\left( t \right) + \mathrm{x{2 4 0}}\left( t \right) + \mathrm{x{2 4 2}}\left( t \right) + \mathrm{x{2 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 1}}\left( t \right) \ \frac{dx{2 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 2}}\left( t \right) + \mathrm{x{2 1 0}}\left( t \right) + \mathrm{x{2 4 1}}\left( t \right) + \mathrm{x{2 4 3}}\left( t \right) + \mathrm{x{2 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 2}}\left( t \right) \ \frac{dx{2 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 3}}\left( t \right) + \mathrm{x{2 1 1}}\left( t \right) + \mathrm{x{2 4 2}}\left( t \right) + \mathrm{x{2 4 4}}\left( t \right) + \mathrm{x{2 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 3}}\left( t \right) \ \frac{dx{2 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 4}}\left( t \right) + \mathrm{x{2 1 2}}\left( t \right) + \mathrm{x{2 4 3}}\left( t \right) + \mathrm{x{2 4 5}}\left( t \right) + \mathrm{x{2 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 4}}\left( t \right) \ \frac{dx{2 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 5}}\left( t \right) + \mathrm{x{2 1 3}}\left( t \right) + \mathrm{x{2 4 4}}\left( t \right) + \mathrm{x{2 4 6}}\left( t \right) + \mathrm{x{2 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 5}}\left( t \right) \ \frac{dx{2 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 6}}\left( t \right) + \mathrm{x{2 1 4}}\left( t \right) + \mathrm{x{2 4 5}}\left( t \right) + \mathrm{x{2 4 7}}\left( t \right) + \mathrm{x{2 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 6}}\left( t \right) \ \frac{dx{2 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 7}}\left( t \right) + \mathrm{x{2 1 5}}\left( t \right) + \mathrm{x{2 4 6}}\left( t \right) + \mathrm{x{2 4 8}}\left( t \right) + \mathrm{x{2 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 7}}\left( t \right) \ \frac{dx{2 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 8}}\left( t \right) + \mathrm{x{2 1 6}}\left( t \right) + \mathrm{x{2 4 7}}\left( t \right) + \mathrm{x{2 4 9}}\left( t \right) + \mathrm{x{2 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 8}}\left( t \right) \ \frac{dx{2 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 4 9}}\left( t \right) + \mathrm{x{2 1 7}}\left( t \right) + \mathrm{x{2 4 8}}\left( t \right) + \mathrm{x{2 5 0}}\left( t \right) + \mathrm{x{2 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 4 9}}\left( t \right) \ \frac{dx{2 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 0}}\left( t \right) + \mathrm{x{2 1 8}}\left( t \right) + \mathrm{x{2 4 9}}\left( t \right) + \mathrm{x{2 5 1}}\left( t \right) + \mathrm{x{2 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 0}}\left( t \right) \ \frac{dx{2 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 1}}\left( t \right) + \mathrm{x{2 1 9}}\left( t \right) + \mathrm{x{2 5 0}}\left( t \right) + \mathrm{x{2 5 2}}\left( t \right) + \mathrm{x{2 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 1}}\left( t \right) \ \frac{dx{2 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 2}}\left( t \right) + \mathrm{x{2 2 0}}\left( t \right) + \mathrm{x{2 5 1}}\left( t \right) + \mathrm{x{2 5 3}}\left( t \right) + \mathrm{x{2 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 2}}\left( t \right) \ \frac{dx{2 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 3}}\left( t \right) + \mathrm{x{2 2 1}}\left( t \right) + \mathrm{x{2 5 2}}\left( t \right) + \mathrm{x{2 5 4}}\left( t \right) + \mathrm{x{2 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 3}}\left( t \right) \ \frac{dx{2 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 4}}\left( t \right) + \mathrm{x{2 2 2}}\left( t \right) + \mathrm{x{2 5 3}}\left( t \right) + \mathrm{x{2 5 5}}\left( t \right) + \mathrm{x{2 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 4}}\left( t \right) \ \frac{dx{2 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 5}}\left( t \right) + \mathrm{x{2 2 3}}\left( t \right) + \mathrm{x{2 5 4}}\left( t \right) + \mathrm{x{2 5 6}}\left( t \right) + \mathrm{x{2 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 5}}\left( t \right) \ \frac{dx{2 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 6}}\left( t \right) + \mathrm{x{2 2 4}}\left( t \right) + \mathrm{x{2 2 5}}\left( t \right) + \mathrm{x{2 5 5}}\left( t \right) + \mathrm{x{2 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 6}}\left( t \right) \ \frac{dx{2 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 7}}\left( t \right) + \mathrm{x{2 2 5}}\left( t \right) + \mathrm{x{2 5 8}}\left( t \right) + \mathrm{x{2 8 8}}\left( t \right) + \mathrm{x{2 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 7}}\left( t \right) \ \frac{dx{2 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 8}}\left( t \right) + \mathrm{x{2 2 6}}\left( t \right) + \mathrm{x{2 5 7}}\left( t \right) + \mathrm{x{2 5 9}}\left( t \right) + \mathrm{x{2 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 8}}\left( t \right) \ \frac{dx{2 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 5 9}}\left( t \right) + \mathrm{x{2 2 7}}\left( t \right) + \mathrm{x{2 5 8}}\left( t \right) + \mathrm{x{2 6 0}}\left( t \right) + \mathrm{x{2 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 5 9}}\left( t \right) \ \frac{dx{2 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 0}}\left( t \right) + \mathrm{x{2 2 8}}\left( t \right) + \mathrm{x{2 5 9}}\left( t \right) + \mathrm{x{2 6 1}}\left( t \right) + \mathrm{x{2 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 0}}\left( t \right) \ \frac{dx{2 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 1}}\left( t \right) + \mathrm{x{2 2 9}}\left( t \right) + \mathrm{x{2 6 0}}\left( t \right) + \mathrm{x{2 6 2}}\left( t \right) + \mathrm{x{2 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 1}}\left( t \right) \ \frac{dx{2 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 2}}\left( t \right) + \mathrm{x{2 3 0}}\left( t \right) + \mathrm{x{2 6 1}}\left( t \right) + \mathrm{x{2 6 3}}\left( t \right) + \mathrm{x{2 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 2}}\left( t \right) \ \frac{dx{2 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 3}}\left( t \right) + \mathrm{x{2 3 1}}\left( t \right) + \mathrm{x{2 6 2}}\left( t \right) + \mathrm{x{2 6 4}}\left( t \right) + \mathrm{x{2 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 3}}\left( t \right) \ \frac{dx{2 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 4}}\left( t \right) + \mathrm{x{2 3 2}}\left( t \right) + \mathrm{x{2 6 3}}\left( t \right) + \mathrm{x{2 6 5}}\left( t \right) + \mathrm{x{2 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 4}}\left( t \right) \ \frac{dx{2 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 5}}\left( t \right) + \mathrm{x{2 3 3}}\left( t \right) + \mathrm{x{2 6 4}}\left( t \right) + \mathrm{x{2 6 6}}\left( t \right) + \mathrm{x{2 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 5}}\left( t \right) \ \frac{dx{2 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 6}}\left( t \right) + \mathrm{x{2 3 4}}\left( t \right) + \mathrm{x{2 6 5}}\left( t \right) + \mathrm{x{2 6 7}}\left( t \right) + \mathrm{x{2 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 6}}\left( t \right) \ \frac{dx{2 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 7}}\left( t \right) + \mathrm{x{2 3 5}}\left( t \right) + \mathrm{x{2 6 6}}\left( t \right) + \mathrm{x{2 6 8}}\left( t \right) + \mathrm{x{2 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 7}}\left( t \right) \ \frac{dx{2 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 8}}\left( t \right) + \mathrm{x{2 3 6}}\left( t \right) + \mathrm{x{2 6 7}}\left( t \right) + \mathrm{x{2 6 9}}\left( t \right) + \mathrm{x{3 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 8}}\left( t \right) \ \frac{dx{2 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 6 9}}\left( t \right) + \mathrm{x{2 3 7}}\left( t \right) + \mathrm{x{2 6 8}}\left( t \right) + \mathrm{x{2 7 0}}\left( t \right) + \mathrm{x{3 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 6 9}}\left( t \right) \ \frac{dx{2 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 0}}\left( t \right) + \mathrm{x{2 3 8}}\left( t \right) + \mathrm{x{2 6 9}}\left( t \right) + \mathrm{x{2 7 1}}\left( t \right) + \mathrm{x{3 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 0}}\left( t \right) \ \frac{dx{2 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 1}}\left( t \right) + \mathrm{x{2 3 9}}\left( t \right) + \mathrm{x{2 7 0}}\left( t \right) + \mathrm{x{2 7 2}}\left( t \right) + \mathrm{x{3 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 1}}\left( t \right) \ \frac{dx{2 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 2}}\left( t \right) + \mathrm{x{2 4 0}}\left( t \right) + \mathrm{x{2 7 1}}\left( t \right) + \mathrm{x{2 7 3}}\left( t \right) + \mathrm{x{3 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 2}}\left( t \right) \ \frac{dx{2 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 3}}\left( t \right) + \mathrm{x{2 4 1}}\left( t \right) + \mathrm{x{2 7 2}}\left( t \right) + \mathrm{x{2 7 4}}\left( t \right) + \mathrm{x{3 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 3}}\left( t \right) \ \frac{dx{2 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 4}}\left( t \right) + \mathrm{x{2 4 2}}\left( t \right) + \mathrm{x{2 7 3}}\left( t \right) + \mathrm{x{2 7 5}}\left( t \right) + \mathrm{x{3 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 4}}\left( t \right) \ \frac{dx{2 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 5}}\left( t \right) + \mathrm{x{2 4 3}}\left( t \right) + \mathrm{x{2 7 4}}\left( t \right) + \mathrm{x{2 7 6}}\left( t \right) + \mathrm{x{3 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 5}}\left( t \right) \ \frac{dx{2 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 6}}\left( t \right) + \mathrm{x{2 4 4}}\left( t \right) + \mathrm{x{2 7 5}}\left( t \right) + \mathrm{x{2 7 7}}\left( t \right) + \mathrm{x{3 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 6}}\left( t \right) \ \frac{dx{2 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 7}}\left( t \right) + \mathrm{x{2 4 5}}\left( t \right) + \mathrm{x{2 7 6}}\left( t \right) + \mathrm{x{2 7 8}}\left( t \right) + \mathrm{x{3 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 7}}\left( t \right) \ \frac{dx{2 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 8}}\left( t \right) + \mathrm{x{2 4 6}}\left( t \right) + \mathrm{x{2 7 7}}\left( t \right) + \mathrm{x{2 7 9}}\left( t \right) + \mathrm{x{3 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 8}}\left( t \right) \ \frac{dx{2 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 7 9}}\left( t \right) + \mathrm{x{2 4 7}}\left( t \right) + \mathrm{x{2 7 8}}\left( t \right) + \mathrm{x{2 8 0}}\left( t \right) + \mathrm{x{3 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 7 9}}\left( t \right) \ \frac{dx{2 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 0}}\left( t \right) + \mathrm{x{2 4 8}}\left( t \right) + \mathrm{x{2 7 9}}\left( t \right) + \mathrm{x{2 8 1}}\left( t \right) + \mathrm{x{3 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 0}}\left( t \right) \ \frac{dx{2 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 1}}\left( t \right) + \mathrm{x{2 4 9}}\left( t \right) + \mathrm{x{2 8 0}}\left( t \right) + \mathrm{x{2 8 2}}\left( t \right) + \mathrm{x{3 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 1}}\left( t \right) \ \frac{dx{2 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 2}}\left( t \right) + \mathrm{x{2 5 0}}\left( t \right) + \mathrm{x{2 8 1}}\left( t \right) + \mathrm{x{2 8 3}}\left( t \right) + \mathrm{x{3 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 2}}\left( t \right) \ \frac{dx{2 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 3}}\left( t \right) + \mathrm{x{2 5 1}}\left( t \right) + \mathrm{x{2 8 2}}\left( t \right) + \mathrm{x{2 8 4}}\left( t \right) + \mathrm{x{3 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 3}}\left( t \right) \ \frac{dx{2 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 4}}\left( t \right) + \mathrm{x{2 5 2}}\left( t \right) + \mathrm{x{2 8 3}}\left( t \right) + \mathrm{x{2 8 5}}\left( t \right) + \mathrm{x{3 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 4}}\left( t \right) \ \frac{dx{2 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 5}}\left( t \right) + \mathrm{x{2 5 3}}\left( t \right) + \mathrm{x{2 8 4}}\left( t \right) + \mathrm{x{2 8 6}}\left( t \right) + \mathrm{x{3 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 5}}\left( t \right) \ \frac{dx{2 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 6}}\left( t \right) + \mathrm{x{2 5 4}}\left( t \right) + \mathrm{x{2 8 5}}\left( t \right) + \mathrm{x{2 8 7}}\left( t \right) + \mathrm{x{3 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 6}}\left( t \right) \ \frac{dx{2 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 7}}\left( t \right) + \mathrm{x{2 5 5}}\left( t \right) + \mathrm{x{2 8 6}}\left( t \right) + \mathrm{x{2 8 8}}\left( t \right) + \mathrm{x{3 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 7}}\left( t \right) \ \frac{dx{2 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 8}}\left( t \right) + \mathrm{x{2 5 6}}\left( t \right) + \mathrm{x{2 5 7}}\left( t \right) + \mathrm{x{2 8 7}}\left( t \right) + \mathrm{x{3 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 8}}\left( t \right) \ \frac{dx{2 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 8 9}}\left( t \right) + \mathrm{x{2 5 7}}\left( t \right) + \mathrm{x{2 9 0}}\left( t \right) + \mathrm{x{3 2 0}}\left( t \right) + \mathrm{x{3 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 8 9}}\left( t \right) \ \frac{dx{2 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 0}}\left( t \right) + \mathrm{x{2 5 8}}\left( t \right) + \mathrm{x{2 8 9}}\left( t \right) + \mathrm{x{2 9 1}}\left( t \right) + \mathrm{x{3 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 0}}\left( t \right) \ \frac{dx{2 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 1}}\left( t \right) + \mathrm{x{2 5 9}}\left( t \right) + \mathrm{x{2 9 0}}\left( t \right) + \mathrm{x{2 9 2}}\left( t \right) + \mathrm{x{3 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 1}}\left( t \right) \ \frac{dx{2 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 2}}\left( t \right) + \mathrm{x{2 6 0}}\left( t \right) + \mathrm{x{2 9 1}}\left( t \right) + \mathrm{x{2 9 3}}\left( t \right) + \mathrm{x{3 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 2}}\left( t \right) \ \frac{dx{2 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 3}}\left( t \right) + \mathrm{x{2 6 1}}\left( t \right) + \mathrm{x{2 9 2}}\left( t \right) + \mathrm{x{2 9 4}}\left( t \right) + \mathrm{x{3 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 3}}\left( t \right) \ \frac{dx{2 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 4}}\left( t \right) + \mathrm{x{2 6 2}}\left( t \right) + \mathrm{x{2 9 3}}\left( t \right) + \mathrm{x{2 9 5}}\left( t \right) + \mathrm{x{3 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 4}}\left( t \right) \ \frac{dx{2 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 5}}\left( t \right) + \mathrm{x{2 6 3}}\left( t \right) + \mathrm{x{2 9 4}}\left( t \right) + \mathrm{x{2 9 6}}\left( t \right) + \mathrm{x{3 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 5}}\left( t \right) \ \frac{dx{2 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 6}}\left( t \right) + \mathrm{x{2 6 4}}\left( t \right) + \mathrm{x{2 9 5}}\left( t \right) + \mathrm{x{2 9 7}}\left( t \right) + \mathrm{x{3 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 6}}\left( t \right) \ \frac{dx{2 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 7}}\left( t \right) + \mathrm{x{2 6 5}}\left( t \right) + \mathrm{x{2 9 6}}\left( t \right) + \mathrm{x{2 9 8}}\left( t \right) + \mathrm{x{3 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 7}}\left( t \right) \ \frac{dx{2 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 8}}\left( t \right) + \mathrm{x{2 6 6}}\left( t \right) + \mathrm{x{2 9 7}}\left( t \right) + \mathrm{x{2 9 9}}\left( t \right) + \mathrm{x{3 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 8}}\left( t \right) \ \frac{dx{2 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{2 9 9}}\left( t \right) + \mathrm{x{2 6 7}}\left( t \right) + \mathrm{x{2 9 8}}\left( t \right) + \mathrm{x{3 0 0}}\left( t \right) + \mathrm{x{3 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{2 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{2 9 9}}\left( t \right) \ \frac{dx{3 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 0}}\left( t \right) + \mathrm{x{2 6 8}}\left( t \right) + \mathrm{x{2 9 9}}\left( t \right) + \mathrm{x{3 0 1}}\left( t \right) + \mathrm{x{3 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 0}}\left( t \right) \ \frac{dx{3 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 1}}\left( t \right) + \mathrm{x{2 6 9}}\left( t \right) + \mathrm{x{3 0 0}}\left( t \right) + \mathrm{x{3 0 2}}\left( t \right) + \mathrm{x{3 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 1}}\left( t \right) \ \frac{dx{3 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 2}}\left( t \right) + \mathrm{x{2 7 0}}\left( t \right) + \mathrm{x{3 0 1}}\left( t \right) + \mathrm{x{3 0 3}}\left( t \right) + \mathrm{x{3 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 2}}\left( t \right) \ \frac{dx{3 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 3}}\left( t \right) + \mathrm{x{2 7 1}}\left( t \right) + \mathrm{x{3 0 2}}\left( t \right) + \mathrm{x{3 0 4}}\left( t \right) + \mathrm{x{3 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 3}}\left( t \right) \ \frac{dx{3 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 4}}\left( t \right) + \mathrm{x{2 7 2}}\left( t \right) + \mathrm{x{3 0 3}}\left( t \right) + \mathrm{x{3 0 5}}\left( t \right) + \mathrm{x{3 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 4}}\left( t \right) \ \frac{dx{3 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 5}}\left( t \right) + \mathrm{x{2 7 3}}\left( t \right) + \mathrm{x{3 0 4}}\left( t \right) + \mathrm{x{3 0 6}}\left( t \right) + \mathrm{x{3 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 5}}\left( t \right) \ \frac{dx{3 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 6}}\left( t \right) + \mathrm{x{2 7 4}}\left( t \right) + \mathrm{x{3 0 5}}\left( t \right) + \mathrm{x{3 0 7}}\left( t \right) + \mathrm{x{3 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 6}}\left( t \right) \ \frac{dx{3 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 7}}\left( t \right) + \mathrm{x{2 7 5}}\left( t \right) + \mathrm{x{3 0 6}}\left( t \right) + \mathrm{x{3 0 8}}\left( t \right) + \mathrm{x{3 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 7}}\left( t \right) \ \frac{dx{3 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 8}}\left( t \right) + \mathrm{x{2 7 6}}\left( t \right) + \mathrm{x{3 0 7}}\left( t \right) + \mathrm{x{3 0 9}}\left( t \right) + \mathrm{x{3 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 8}}\left( t \right) \ \frac{dx{3 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 0 9}}\left( t \right) + \mathrm{x{2 7 7}}\left( t \right) + \mathrm{x{3 0 8}}\left( t \right) + \mathrm{x{3 1 0}}\left( t \right) + \mathrm{x{3 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 0 9}}\left( t \right) \ \frac{dx{3 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 0}}\left( t \right) + \mathrm{x{2 7 8}}\left( t \right) + \mathrm{x{3 0 9}}\left( t \right) + \mathrm{x{3 1 1}}\left( t \right) + \mathrm{x{3 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 0}}\left( t \right) \ \frac{dx{3 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 1}}\left( t \right) + \mathrm{x{2 7 9}}\left( t \right) + \mathrm{x{3 1 0}}\left( t \right) + \mathrm{x{3 1 2}}\left( t \right) + \mathrm{x{3 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 1}}\left( t \right) \ \frac{dx{3 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 2}}\left( t \right) + \mathrm{x{2 8 0}}\left( t \right) + \mathrm{x{3 1 1}}\left( t \right) + \mathrm{x{3 1 3}}\left( t \right) + \mathrm{x{3 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 2}}\left( t \right) \ \frac{dx{3 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 3}}\left( t \right) + \mathrm{x{2 8 1}}\left( t \right) + \mathrm{x{3 1 2}}\left( t \right) + \mathrm{x{3 1 4}}\left( t \right) + \mathrm{x{3 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 3}}\left( t \right) \ \frac{dx{3 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 4}}\left( t \right) + \mathrm{x{2 8 2}}\left( t \right) + \mathrm{x{3 1 3}}\left( t \right) + \mathrm{x{3 1 5}}\left( t \right) + \mathrm{x{3 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 4}}\left( t \right) \ \frac{dx{3 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 5}}\left( t \right) + \mathrm{x{2 8 3}}\left( t \right) + \mathrm{x{3 1 4}}\left( t \right) + \mathrm{x{3 1 6}}\left( t \right) + \mathrm{x{3 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 5}}\left( t \right) \ \frac{dx{3 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 6}}\left( t \right) + \mathrm{x{2 8 4}}\left( t \right) + \mathrm{x{3 1 5}}\left( t \right) + \mathrm{x{3 1 7}}\left( t \right) + \mathrm{x{3 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 6}}\left( t \right) \ \frac{dx{3 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 7}}\left( t \right) + \mathrm{x{2 8 5}}\left( t \right) + \mathrm{x{3 1 6}}\left( t \right) + \mathrm{x{3 1 8}}\left( t \right) + \mathrm{x{3 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 7}}\left( t \right) \ \frac{dx{3 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 8}}\left( t \right) + \mathrm{x{2 8 6}}\left( t \right) + \mathrm{x{3 1 7}}\left( t \right) + \mathrm{x{3 1 9}}\left( t \right) + \mathrm{x{3 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 8}}\left( t \right) \ \frac{dx{3 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 1 9}}\left( t \right) + \mathrm{x{2 8 7}}\left( t \right) + \mathrm{x{3 1 8}}\left( t \right) + \mathrm{x{3 2 0}}\left( t \right) + \mathrm{x{3 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 1 9}}\left( t \right) \ \frac{dx{3 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 0}}\left( t \right) + \mathrm{x{2 8 8}}\left( t \right) + \mathrm{x{2 8 9}}\left( t \right) + \mathrm{x{3 1 9}}\left( t \right) + \mathrm{x{3 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 0}}\left( t \right) \ \frac{dx{3 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 1}}\left( t \right) + \mathrm{x{2 8 9}}\left( t \right) + \mathrm{x{3 2 2}}\left( t \right) + \mathrm{x{3 5 2}}\left( t \right) + \mathrm{x{3 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 1}}\left( t \right) \ \frac{dx{3 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 2}}\left( t \right) + \mathrm{x{2 9 0}}\left( t \right) + \mathrm{x{3 2 1}}\left( t \right) + \mathrm{x{3 2 3}}\left( t \right) + \mathrm{x{3 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 2}}\left( t \right) \ \frac{dx{3 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 3}}\left( t \right) + \mathrm{x{2 9 1}}\left( t \right) + \mathrm{x{3 2 2}}\left( t \right) + \mathrm{x{3 2 4}}\left( t \right) + \mathrm{x{3 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 3}}\left( t \right) \ \frac{dx{3 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 4}}\left( t \right) + \mathrm{x{2 9 2}}\left( t \right) + \mathrm{x{3 2 3}}\left( t \right) + \mathrm{x{3 2 5}}\left( t \right) + \mathrm{x{3 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 4}}\left( t \right) \ \frac{dx{3 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 5}}\left( t \right) + \mathrm{x{2 9 3}}\left( t \right) + \mathrm{x{3 2 4}}\left( t \right) + \mathrm{x{3 2 6}}\left( t \right) + \mathrm{x{3 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 5}}\left( t \right) \ \frac{dx{3 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 6}}\left( t \right) + \mathrm{x{2 9 4}}\left( t \right) + \mathrm{x{3 2 5}}\left( t \right) + \mathrm{x{3 2 7}}\left( t \right) + \mathrm{x{3 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 6}}\left( t \right) \ \frac{dx{3 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 7}}\left( t \right) + \mathrm{x{2 9 5}}\left( t \right) + \mathrm{x{3 2 6}}\left( t \right) + \mathrm{x{3 2 8}}\left( t \right) + \mathrm{x{3 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 7}}\left( t \right) \ \frac{dx{3 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 8}}\left( t \right) + \mathrm{x{2 9 6}}\left( t \right) + \mathrm{x{3 2 7}}\left( t \right) + \mathrm{x{3 2 9}}\left( t \right) + \mathrm{x{3 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 8}}\left( t \right) \ \frac{dx{3 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 2 9}}\left( t \right) + \mathrm{x{2 9 7}}\left( t \right) + \mathrm{x{3 2 8}}\left( t \right) + \mathrm{x{3 3 0}}\left( t \right) + \mathrm{x{3 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 2 9}}\left( t \right) \ \frac{dx{3 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 0}}\left( t \right) + \mathrm{x{2 9 8}}\left( t \right) + \mathrm{x{3 2 9}}\left( t \right) + \mathrm{x{3 3 1}}\left( t \right) + \mathrm{x{3 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 0}}\left( t \right) \ \frac{dx{3 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 1}}\left( t \right) + \mathrm{x{2 9 9}}\left( t \right) + \mathrm{x{3 3 0}}\left( t \right) + \mathrm{x{3 3 2}}\left( t \right) + \mathrm{x{3 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 1}}\left( t \right) \ \frac{dx{3 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 2}}\left( t \right) + \mathrm{x{3 0 0}}\left( t \right) + \mathrm{x{3 3 1}}\left( t \right) + \mathrm{x{3 3 3}}\left( t \right) + \mathrm{x{3 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 2}}\left( t \right) \ \frac{dx{3 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 3}}\left( t \right) + \mathrm{x{3 0 1}}\left( t \right) + \mathrm{x{3 3 2}}\left( t \right) + \mathrm{x{3 3 4}}\left( t \right) + \mathrm{x{3 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 3}}\left( t \right) \ \frac{dx{3 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 4}}\left( t \right) + \mathrm{x{3 0 2}}\left( t \right) + \mathrm{x{3 3 3}}\left( t \right) + \mathrm{x{3 3 5}}\left( t \right) + \mathrm{x{3 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 4}}\left( t \right) \ \frac{dx{3 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 5}}\left( t \right) + \mathrm{x{3 0 3}}\left( t \right) + \mathrm{x{3 3 4}}\left( t \right) + \mathrm{x{3 3 6}}\left( t \right) + \mathrm{x{3 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 5}}\left( t \right) \ \frac{dx{3 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 6}}\left( t \right) + \mathrm{x{3 0 4}}\left( t \right) + \mathrm{x{3 3 5}}\left( t \right) + \mathrm{x{3 3 7}}\left( t \right) + \mathrm{x{3 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 6}}\left( t \right) \ \frac{dx{3 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 7}}\left( t \right) + \mathrm{x{3 0 5}}\left( t \right) + \mathrm{x{3 3 6}}\left( t \right) + \mathrm{x{3 3 8}}\left( t \right) + \mathrm{x{3 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 7}}\left( t \right) \ \frac{dx{3 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 8}}\left( t \right) + \mathrm{x{3 0 6}}\left( t \right) + \mathrm{x{3 3 7}}\left( t \right) + \mathrm{x{3 3 9}}\left( t \right) + \mathrm{x{3 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 8}}\left( t \right) \ \frac{dx{3 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 3 9}}\left( t \right) + \mathrm{x{3 0 7}}\left( t \right) + \mathrm{x{3 3 8}}\left( t \right) + \mathrm{x{3 4 0}}\left( t \right) + \mathrm{x{3 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 3 9}}\left( t \right) \ \frac{dx{3 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 0}}\left( t \right) + \mathrm{x{3 0 8}}\left( t \right) + \mathrm{x{3 3 9}}\left( t \right) + \mathrm{x{3 4 1}}\left( t \right) + \mathrm{x{3 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 0}}\left( t \right) \ \frac{dx{3 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 1}}\left( t \right) + \mathrm{x{3 0 9}}\left( t \right) + \mathrm{x{3 4 0}}\left( t \right) + \mathrm{x{3 4 2}}\left( t \right) + \mathrm{x{3 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 1}}\left( t \right) \ \frac{dx{3 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 2}}\left( t \right) + \mathrm{x{3 1 0}}\left( t \right) + \mathrm{x{3 4 1}}\left( t \right) + \mathrm{x{3 4 3}}\left( t \right) + \mathrm{x{3 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 2}}\left( t \right) \ \frac{dx{3 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 3}}\left( t \right) + \mathrm{x{3 1 1}}\left( t \right) + \mathrm{x{3 4 2}}\left( t \right) + \mathrm{x{3 4 4}}\left( t \right) + \mathrm{x{3 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 3}}\left( t \right) \ \frac{dx{3 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 4}}\left( t \right) + \mathrm{x{3 1 2}}\left( t \right) + \mathrm{x{3 4 3}}\left( t \right) + \mathrm{x{3 4 5}}\left( t \right) + \mathrm{x{3 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 4}}\left( t \right) \ \frac{dx{3 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 5}}\left( t \right) + \mathrm{x{3 1 3}}\left( t \right) + \mathrm{x{3 4 4}}\left( t \right) + \mathrm{x{3 4 6}}\left( t \right) + \mathrm{x{3 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 5}}\left( t \right) \ \frac{dx{3 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 6}}\left( t \right) + \mathrm{x{3 1 4}}\left( t \right) + \mathrm{x{3 4 5}}\left( t \right) + \mathrm{x{3 4 7}}\left( t \right) + \mathrm{x{3 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 6}}\left( t \right) \ \frac{dx{3 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 7}}\left( t \right) + \mathrm{x{3 1 5}}\left( t \right) + \mathrm{x{3 4 6}}\left( t \right) + \mathrm{x{3 4 8}}\left( t \right) + \mathrm{x{3 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 7}}\left( t \right) \ \frac{dx{3 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 8}}\left( t \right) + \mathrm{x{3 1 6}}\left( t \right) + \mathrm{x{3 4 7}}\left( t \right) + \mathrm{x{3 4 9}}\left( t \right) + \mathrm{x{3 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 8}}\left( t \right) \ \frac{dx{3 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 4 9}}\left( t \right) + \mathrm{x{3 1 7}}\left( t \right) + \mathrm{x{3 4 8}}\left( t \right) + \mathrm{x{3 5 0}}\left( t \right) + \mathrm{x{3 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 4 9}}\left( t \right) \ \frac{dx{3 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 0}}\left( t \right) + \mathrm{x{3 1 8}}\left( t \right) + \mathrm{x{3 4 9}}\left( t \right) + \mathrm{x{3 5 1}}\left( t \right) + \mathrm{x{3 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 0}}\left( t \right) \ \frac{dx{3 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 1}}\left( t \right) + \mathrm{x{3 1 9}}\left( t \right) + \mathrm{x{3 5 0}}\left( t \right) + \mathrm{x{3 5 2}}\left( t \right) + \mathrm{x{3 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 1}}\left( t \right) \ \frac{dx{3 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 2}}\left( t \right) + \mathrm{x{3 2 0}}\left( t \right) + \mathrm{x{3 2 1}}\left( t \right) + \mathrm{x{3 5 1}}\left( t \right) + \mathrm{x{3 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 2}}\left( t \right) \ \frac{dx{3 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 3}}\left( t \right) + \mathrm{x{3 2 1}}\left( t \right) + \mathrm{x{3 5 4}}\left( t \right) + \mathrm{x{3 8 4}}\left( t \right) + \mathrm{x{3 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 3}}\left( t \right) \ \frac{dx{3 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 4}}\left( t \right) + \mathrm{x{3 2 2}}\left( t \right) + \mathrm{x{3 5 3}}\left( t \right) + \mathrm{x{3 5 5}}\left( t \right) + \mathrm{x{3 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 4}}\left( t \right) \ \frac{dx{3 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 5}}\left( t \right) + \mathrm{x{3 2 3}}\left( t \right) + \mathrm{x{3 5 4}}\left( t \right) + \mathrm{x{3 5 6}}\left( t \right) + \mathrm{x{3 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 5}}\left( t \right) \ \frac{dx{3 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 6}}\left( t \right) + \mathrm{x{3 2 4}}\left( t \right) + \mathrm{x{3 5 5}}\left( t \right) + \mathrm{x{3 5 7}}\left( t \right) + \mathrm{x{3 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 6}}\left( t \right) \ \frac{dx{3 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 7}}\left( t \right) + \mathrm{x{3 2 5}}\left( t \right) + \mathrm{x{3 5 6}}\left( t \right) + \mathrm{x{3 5 8}}\left( t \right) + \mathrm{x{3 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 7}}\left( t \right) \ \frac{dx{3 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 8}}\left( t \right) + \mathrm{x{3 2 6}}\left( t \right) + \mathrm{x{3 5 7}}\left( t \right) + \mathrm{x{3 5 9}}\left( t \right) + \mathrm{x{3 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 8}}\left( t \right) \ \frac{dx{3 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 5 9}}\left( t \right) + \mathrm{x{3 2 7}}\left( t \right) + \mathrm{x{3 5 8}}\left( t \right) + \mathrm{x{3 6 0}}\left( t \right) + \mathrm{x{3 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 5 9}}\left( t \right) \ \frac{dx{3 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 0}}\left( t \right) + \mathrm{x{3 2 8}}\left( t \right) + \mathrm{x{3 5 9}}\left( t \right) + \mathrm{x{3 6 1}}\left( t \right) + \mathrm{x{3 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 0}}\left( t \right) \ \frac{dx{3 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 1}}\left( t \right) + \mathrm{x{3 2 9}}\left( t \right) + \mathrm{x{3 6 0}}\left( t \right) + \mathrm{x{3 6 2}}\left( t \right) + \mathrm{x{3 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 1}}\left( t \right) \ \frac{dx{3 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 2}}\left( t \right) + \mathrm{x{3 3 0}}\left( t \right) + \mathrm{x{3 6 1}}\left( t \right) + \mathrm{x{3 6 3}}\left( t \right) + \mathrm{x{3 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 2}}\left( t \right) \ \frac{dx{3 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 3}}\left( t \right) + \mathrm{x{3 3 1}}\left( t \right) + \mathrm{x{3 6 2}}\left( t \right) + \mathrm{x{3 6 4}}\left( t \right) + \mathrm{x{3 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 3}}\left( t \right) \ \frac{dx{3 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 4}}\left( t \right) + \mathrm{x{3 3 2}}\left( t \right) + \mathrm{x{3 6 3}}\left( t \right) + \mathrm{x{3 6 5}}\left( t \right) + \mathrm{x{3 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 4}}\left( t \right) \ \frac{dx{3 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 5}}\left( t \right) + \mathrm{x{3 3 3}}\left( t \right) + \mathrm{x{3 6 4}}\left( t \right) + \mathrm{x{3 6 6}}\left( t \right) + \mathrm{x{3 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 5}}\left( t \right) \ \frac{dx{3 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 6}}\left( t \right) + \mathrm{x{3 3 4}}\left( t \right) + \mathrm{x{3 6 5}}\left( t \right) + \mathrm{x{3 6 7}}\left( t \right) + \mathrm{x{3 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 6}}\left( t \right) \ \frac{dx{3 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 7}}\left( t \right) + \mathrm{x{3 3 5}}\left( t \right) + \mathrm{x{3 6 6}}\left( t \right) + \mathrm{x{3 6 8}}\left( t \right) + \mathrm{x{3 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 7}}\left( t \right) \ \frac{dx{3 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 8}}\left( t \right) + \mathrm{x{3 3 6}}\left( t \right) + \mathrm{x{3 6 7}}\left( t \right) + \mathrm{x{3 6 9}}\left( t \right) + \mathrm{x{4 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 8}}\left( t \right) \ \frac{dx{3 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 6 9}}\left( t \right) + \mathrm{x{3 3 7}}\left( t \right) + \mathrm{x{3 6 8}}\left( t \right) + \mathrm{x{3 7 0}}\left( t \right) + \mathrm{x{4 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 6 9}}\left( t \right) \ \frac{dx{3 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 0}}\left( t \right) + \mathrm{x{3 3 8}}\left( t \right) + \mathrm{x{3 6 9}}\left( t \right) + \mathrm{x{3 7 1}}\left( t \right) + \mathrm{x{4 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 0}}\left( t \right) \ \frac{dx{3 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 1}}\left( t \right) + \mathrm{x{3 3 9}}\left( t \right) + \mathrm{x{3 7 0}}\left( t \right) + \mathrm{x{3 7 2}}\left( t \right) + \mathrm{x{4 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 1}}\left( t \right) \ \frac{dx{3 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 2}}\left( t \right) + \mathrm{x{3 4 0}}\left( t \right) + \mathrm{x{3 7 1}}\left( t \right) + \mathrm{x{3 7 3}}\left( t \right) + \mathrm{x{4 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 2}}\left( t \right) \ \frac{dx{3 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 3}}\left( t \right) + \mathrm{x{3 4 1}}\left( t \right) + \mathrm{x{3 7 2}}\left( t \right) + \mathrm{x{3 7 4}}\left( t \right) + \mathrm{x{4 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 3}}\left( t \right) \ \frac{dx{3 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 4}}\left( t \right) + \mathrm{x{3 4 2}}\left( t \right) + \mathrm{x{3 7 3}}\left( t \right) + \mathrm{x{3 7 5}}\left( t \right) + \mathrm{x{4 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 4}}\left( t \right) \ \frac{dx{3 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 5}}\left( t \right) + \mathrm{x{3 4 3}}\left( t \right) + \mathrm{x{3 7 4}}\left( t \right) + \mathrm{x{3 7 6}}\left( t \right) + \mathrm{x{4 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 5}}\left( t \right) \ \frac{dx{3 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 6}}\left( t \right) + \mathrm{x{3 4 4}}\left( t \right) + \mathrm{x{3 7 5}}\left( t \right) + \mathrm{x{3 7 7}}\left( t \right) + \mathrm{x{4 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 6}}\left( t \right) \ \frac{dx{3 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 7}}\left( t \right) + \mathrm{x{3 4 5}}\left( t \right) + \mathrm{x{3 7 6}}\left( t \right) + \mathrm{x{3 7 8}}\left( t \right) + \mathrm{x{4 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 7}}\left( t \right) \ \frac{dx{3 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 8}}\left( t \right) + \mathrm{x{3 4 6}}\left( t \right) + \mathrm{x{3 7 7}}\left( t \right) + \mathrm{x{3 7 9}}\left( t \right) + \mathrm{x{4 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 8}}\left( t \right) \ \frac{dx{3 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 7 9}}\left( t \right) + \mathrm{x{3 4 7}}\left( t \right) + \mathrm{x{3 7 8}}\left( t \right) + \mathrm{x{3 8 0}}\left( t \right) + \mathrm{x{4 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 7 9}}\left( t \right) \ \frac{dx{3 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 0}}\left( t \right) + \mathrm{x{3 4 8}}\left( t \right) + \mathrm{x{3 7 9}}\left( t \right) + \mathrm{x{3 8 1}}\left( t \right) + \mathrm{x{4 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 0}}\left( t \right) \ \frac{dx{3 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 1}}\left( t \right) + \mathrm{x{3 4 9}}\left( t \right) + \mathrm{x{3 8 0}}\left( t \right) + \mathrm{x{3 8 2}}\left( t \right) + \mathrm{x{4 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 1}}\left( t \right) \ \frac{dx{3 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 2}}\left( t \right) + \mathrm{x{3 5 0}}\left( t \right) + \mathrm{x{3 8 1}}\left( t \right) + \mathrm{x{3 8 3}}\left( t \right) + \mathrm{x{4 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 2}}\left( t \right) \ \frac{dx{3 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 3}}\left( t \right) + \mathrm{x{3 5 1}}\left( t \right) + \mathrm{x{3 8 2}}\left( t \right) + \mathrm{x{3 8 4}}\left( t \right) + \mathrm{x{4 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 3}}\left( t \right) \ \frac{dx{3 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 4}}\left( t \right) + \mathrm{x{3 5 2}}\left( t \right) + \mathrm{x{3 5 3}}\left( t \right) + \mathrm{x{3 8 3}}\left( t \right) + \mathrm{x{4 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 4}}\left( t \right) \ \frac{dx{3 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 5}}\left( t \right) + \mathrm{x{3 5 3}}\left( t \right) + \mathrm{x{3 8 6}}\left( t \right) + \mathrm{x{4 1 6}}\left( t \right) + \mathrm{x{4 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 5}}\left( t \right) \ \frac{dx{3 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 6}}\left( t \right) + \mathrm{x{3 5 4}}\left( t \right) + \mathrm{x{3 8 5}}\left( t \right) + \mathrm{x{3 8 7}}\left( t \right) + \mathrm{x{4 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 6}}\left( t \right) \ \frac{dx{3 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 7}}\left( t \right) + \mathrm{x{3 5 5}}\left( t \right) + \mathrm{x{3 8 6}}\left( t \right) + \mathrm{x{3 8 8}}\left( t \right) + \mathrm{x{4 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 7}}\left( t \right) \ \frac{dx{3 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 8}}\left( t \right) + \mathrm{x{3 5 6}}\left( t \right) + \mathrm{x{3 8 7}}\left( t \right) + \mathrm{x{3 8 9}}\left( t \right) + \mathrm{x{4 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 8}}\left( t \right) \ \frac{dx{3 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 8 9}}\left( t \right) + \mathrm{x{3 5 7}}\left( t \right) + \mathrm{x{3 8 8}}\left( t \right) + \mathrm{x{3 9 0}}\left( t \right) + \mathrm{x{4 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 8 9}}\left( t \right) \ \frac{dx{3 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 0}}\left( t \right) + \mathrm{x{3 5 8}}\left( t \right) + \mathrm{x{3 8 9}}\left( t \right) + \mathrm{x{3 9 1}}\left( t \right) + \mathrm{x{4 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 0}}\left( t \right) \ \frac{dx{3 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 1}}\left( t \right) + \mathrm{x{3 5 9}}\left( t \right) + \mathrm{x{3 9 0}}\left( t \right) + \mathrm{x{3 9 2}}\left( t \right) + \mathrm{x{4 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 1}}\left( t \right) \ \frac{dx{3 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 2}}\left( t \right) + \mathrm{x{3 6 0}}\left( t \right) + \mathrm{x{3 9 1}}\left( t \right) + \mathrm{x{3 9 3}}\left( t \right) + \mathrm{x{4 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 2}}\left( t \right) \ \frac{dx{3 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 3}}\left( t \right) + \mathrm{x{3 6 1}}\left( t \right) + \mathrm{x{3 9 2}}\left( t \right) + \mathrm{x{3 9 4}}\left( t \right) + \mathrm{x{4 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 3}}\left( t \right) \ \frac{dx{3 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 4}}\left( t \right) + \mathrm{x{3 6 2}}\left( t \right) + \mathrm{x{3 9 3}}\left( t \right) + \mathrm{x{3 9 5}}\left( t \right) + \mathrm{x{4 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 4}}\left( t \right) \ \frac{dx{3 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 5}}\left( t \right) + \mathrm{x{3 6 3}}\left( t \right) + \mathrm{x{3 9 4}}\left( t \right) + \mathrm{x{3 9 6}}\left( t \right) + \mathrm{x{4 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 5}}\left( t \right) \ \frac{dx{3 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 6}}\left( t \right) + \mathrm{x{3 6 4}}\left( t \right) + \mathrm{x{3 9 5}}\left( t \right) + \mathrm{x{3 9 7}}\left( t \right) + \mathrm{x{4 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 6}}\left( t \right) \ \frac{dx{3 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 7}}\left( t \right) + \mathrm{x{3 6 5}}\left( t \right) + \mathrm{x{3 9 6}}\left( t \right) + \mathrm{x{3 9 8}}\left( t \right) + \mathrm{x{4 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 7}}\left( t \right) \ \frac{dx{3 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 8}}\left( t \right) + \mathrm{x{3 6 6}}\left( t \right) + \mathrm{x{3 9 7}}\left( t \right) + \mathrm{x{3 9 9}}\left( t \right) + \mathrm{x{4 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 8}}\left( t \right) \ \frac{dx{3 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{3 9 9}}\left( t \right) + \mathrm{x{3 6 7}}\left( t \right) + \mathrm{x{3 9 8}}\left( t \right) + \mathrm{x{4 0 0}}\left( t \right) + \mathrm{x{4 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{3 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{3 9 9}}\left( t \right) \ \frac{dx{4 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 0}}\left( t \right) + \mathrm{x{3 6 8}}\left( t \right) + \mathrm{x{3 9 9}}\left( t \right) + \mathrm{x{4 0 1}}\left( t \right) + \mathrm{x{4 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 0}}\left( t \right) \ \frac{dx{4 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 1}}\left( t \right) + \mathrm{x{3 6 9}}\left( t \right) + \mathrm{x{4 0 0}}\left( t \right) + \mathrm{x{4 0 2}}\left( t \right) + \mathrm{x{4 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 1}}\left( t \right) \ \frac{dx{4 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 2}}\left( t \right) + \mathrm{x{3 7 0}}\left( t \right) + \mathrm{x{4 0 1}}\left( t \right) + \mathrm{x{4 0 3}}\left( t \right) + \mathrm{x{4 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 2}}\left( t \right) \ \frac{dx{4 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 3}}\left( t \right) + \mathrm{x{3 7 1}}\left( t \right) + \mathrm{x{4 0 2}}\left( t \right) + \mathrm{x{4 0 4}}\left( t \right) + \mathrm{x{4 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 3}}\left( t \right) \ \frac{dx{4 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 4}}\left( t \right) + \mathrm{x{3 7 2}}\left( t \right) + \mathrm{x{4 0 3}}\left( t \right) + \mathrm{x{4 0 5}}\left( t \right) + \mathrm{x{4 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 4}}\left( t \right) \ \frac{dx{4 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 5}}\left( t \right) + \mathrm{x{3 7 3}}\left( t \right) + \mathrm{x{4 0 4}}\left( t \right) + \mathrm{x{4 0 6}}\left( t \right) + \mathrm{x{4 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 5}}\left( t \right) \ \frac{dx{4 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 6}}\left( t \right) + \mathrm{x{3 7 4}}\left( t \right) + \mathrm{x{4 0 5}}\left( t \right) + \mathrm{x{4 0 7}}\left( t \right) + \mathrm{x{4 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 6}}\left( t \right) \ \frac{dx{4 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 7}}\left( t \right) + \mathrm{x{3 7 5}}\left( t \right) + \mathrm{x{4 0 6}}\left( t \right) + \mathrm{x{4 0 8}}\left( t \right) + \mathrm{x{4 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 7}}\left( t \right) \ \frac{dx{4 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 8}}\left( t \right) + \mathrm{x{3 7 6}}\left( t \right) + \mathrm{x{4 0 7}}\left( t \right) + \mathrm{x{4 0 9}}\left( t \right) + \mathrm{x{4 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 8}}\left( t \right) \ \frac{dx{4 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 0 9}}\left( t \right) + \mathrm{x{3 7 7}}\left( t \right) + \mathrm{x{4 0 8}}\left( t \right) + \mathrm{x{4 1 0}}\left( t \right) + \mathrm{x{4 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 0 9}}\left( t \right) \ \frac{dx{4 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 0}}\left( t \right) + \mathrm{x{3 7 8}}\left( t \right) + \mathrm{x{4 0 9}}\left( t \right) + \mathrm{x{4 1 1}}\left( t \right) + \mathrm{x{4 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 0}}\left( t \right) \ \frac{dx{4 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 1}}\left( t \right) + \mathrm{x{3 7 9}}\left( t \right) + \mathrm{x{4 1 0}}\left( t \right) + \mathrm{x{4 1 2}}\left( t \right) + \mathrm{x{4 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 1}}\left( t \right) \ \frac{dx{4 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 2}}\left( t \right) + \mathrm{x{3 8 0}}\left( t \right) + \mathrm{x{4 1 1}}\left( t \right) + \mathrm{x{4 1 3}}\left( t \right) + \mathrm{x{4 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 2}}\left( t \right) \ \frac{dx{4 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 3}}\left( t \right) + \mathrm{x{3 8 1}}\left( t \right) + \mathrm{x{4 1 2}}\left( t \right) + \mathrm{x{4 1 4}}\left( t \right) + \mathrm{x{4 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 3}}\left( t \right) \ \frac{dx{4 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 4}}\left( t \right) + \mathrm{x{3 8 2}}\left( t \right) + \mathrm{x{4 1 3}}\left( t \right) + \mathrm{x{4 1 5}}\left( t \right) + \mathrm{x{4 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 4}}\left( t \right) \ \frac{dx{4 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 5}}\left( t \right) + \mathrm{x{3 8 3}}\left( t \right) + \mathrm{x{4 1 4}}\left( t \right) + \mathrm{x{4 1 6}}\left( t \right) + \mathrm{x{4 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 5}}\left( t \right) \ \frac{dx{4 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 6}}\left( t \right) + \mathrm{x{3 8 4}}\left( t \right) + \mathrm{x{3 8 5}}\left( t \right) + \mathrm{x{4 1 5}}\left( t \right) + \mathrm{x{4 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 6}}\left( t \right) \ \frac{dx{4 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 7}}\left( t \right) + \mathrm{x{3 8 5}}\left( t \right) + \mathrm{x{4 1 8}}\left( t \right) + \mathrm{x{4 4 8}}\left( t \right) + \mathrm{x{4 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 7}}\left( t \right) \ \frac{dx{4 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 8}}\left( t \right) + \mathrm{x{3 8 6}}\left( t \right) + \mathrm{x{4 1 7}}\left( t \right) + \mathrm{x{4 1 9}}\left( t \right) + \mathrm{x{4 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 8}}\left( t \right) \ \frac{dx{4 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 1 9}}\left( t \right) + \mathrm{x{3 8 7}}\left( t \right) + \mathrm{x{4 1 8}}\left( t \right) + \mathrm{x{4 2 0}}\left( t \right) + \mathrm{x{4 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 1 9}}\left( t \right) \ \frac{dx{4 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 0}}\left( t \right) + \mathrm{x{3 8 8}}\left( t \right) + \mathrm{x{4 1 9}}\left( t \right) + \mathrm{x{4 2 1}}\left( t \right) + \mathrm{x{4 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 0}}\left( t \right) \ \frac{dx{4 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 1}}\left( t \right) + \mathrm{x{3 8 9}}\left( t \right) + \mathrm{x{4 2 0}}\left( t \right) + \mathrm{x{4 2 2}}\left( t \right) + \mathrm{x{4 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 1}}\left( t \right) \ \frac{dx{4 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 2}}\left( t \right) + \mathrm{x{3 9 0}}\left( t \right) + \mathrm{x{4 2 1}}\left( t \right) + \mathrm{x{4 2 3}}\left( t \right) + \mathrm{x{4 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 2}}\left( t \right) \ \frac{dx{4 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 3}}\left( t \right) + \mathrm{x{3 9 1}}\left( t \right) + \mathrm{x{4 2 2}}\left( t \right) + \mathrm{x{4 2 4}}\left( t \right) + \mathrm{x{4 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 3}}\left( t \right) \ \frac{dx{4 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 4}}\left( t \right) + \mathrm{x{3 9 2}}\left( t \right) + \mathrm{x{4 2 3}}\left( t \right) + \mathrm{x{4 2 5}}\left( t \right) + \mathrm{x{4 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 4}}\left( t \right) \ \frac{dx{4 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 5}}\left( t \right) + \mathrm{x{3 9 3}}\left( t \right) + \mathrm{x{4 2 4}}\left( t \right) + \mathrm{x{4 2 6}}\left( t \right) + \mathrm{x{4 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 5}}\left( t \right) \ \frac{dx{4 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 6}}\left( t \right) + \mathrm{x{3 9 4}}\left( t \right) + \mathrm{x{4 2 5}}\left( t \right) + \mathrm{x{4 2 7}}\left( t \right) + \mathrm{x{4 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 6}}\left( t \right) \ \frac{dx{4 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 7}}\left( t \right) + \mathrm{x{3 9 5}}\left( t \right) + \mathrm{x{4 2 6}}\left( t \right) + \mathrm{x{4 2 8}}\left( t \right) + \mathrm{x{4 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 7}}\left( t \right) \ \frac{dx{4 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 8}}\left( t \right) + \mathrm{x{3 9 6}}\left( t \right) + \mathrm{x{4 2 7}}\left( t \right) + \mathrm{x{4 2 9}}\left( t \right) + \mathrm{x{4 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 8}}\left( t \right) \ \frac{dx{4 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 2 9}}\left( t \right) + \mathrm{x{3 9 7}}\left( t \right) + \mathrm{x{4 2 8}}\left( t \right) + \mathrm{x{4 3 0}}\left( t \right) + \mathrm{x{4 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 2 9}}\left( t \right) \ \frac{dx{4 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 0}}\left( t \right) + \mathrm{x{3 9 8}}\left( t \right) + \mathrm{x{4 2 9}}\left( t \right) + \mathrm{x{4 3 1}}\left( t \right) + \mathrm{x{4 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 0}}\left( t \right) \ \frac{dx{4 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 1}}\left( t \right) + \mathrm{x{3 9 9}}\left( t \right) + \mathrm{x{4 3 0}}\left( t \right) + \mathrm{x{4 3 2}}\left( t \right) + \mathrm{x{4 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 1}}\left( t \right) \ \frac{dx{4 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 2}}\left( t \right) + \mathrm{x{4 0 0}}\left( t \right) + \mathrm{x{4 3 1}}\left( t \right) + \mathrm{x{4 3 3}}\left( t \right) + \mathrm{x{4 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 2}}\left( t \right) \ \frac{dx{4 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 3}}\left( t \right) + \mathrm{x{4 0 1}}\left( t \right) + \mathrm{x{4 3 2}}\left( t \right) + \mathrm{x{4 3 4}}\left( t \right) + \mathrm{x{4 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 3}}\left( t \right) \ \frac{dx{4 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 4}}\left( t \right) + \mathrm{x{4 0 2}}\left( t \right) + \mathrm{x{4 3 3}}\left( t \right) + \mathrm{x{4 3 5}}\left( t \right) + \mathrm{x{4 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 4}}\left( t \right) \ \frac{dx{4 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 5}}\left( t \right) + \mathrm{x{4 0 3}}\left( t \right) + \mathrm{x{4 3 4}}\left( t \right) + \mathrm{x{4 3 6}}\left( t \right) + \mathrm{x{4 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 5}}\left( t \right) \ \frac{dx{4 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 6}}\left( t \right) + \mathrm{x{4 0 4}}\left( t \right) + \mathrm{x{4 3 5}}\left( t \right) + \mathrm{x{4 3 7}}\left( t \right) + \mathrm{x{4 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 6}}\left( t \right) \ \frac{dx{4 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 7}}\left( t \right) + \mathrm{x{4 0 5}}\left( t \right) + \mathrm{x{4 3 6}}\left( t \right) + \mathrm{x{4 3 8}}\left( t \right) + \mathrm{x{4 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 7}}\left( t \right) \ \frac{dx{4 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 8}}\left( t \right) + \mathrm{x{4 0 6}}\left( t \right) + \mathrm{x{4 3 7}}\left( t \right) + \mathrm{x{4 3 9}}\left( t \right) + \mathrm{x{4 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 8}}\left( t \right) \ \frac{dx{4 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 3 9}}\left( t \right) + \mathrm{x{4 0 7}}\left( t \right) + \mathrm{x{4 3 8}}\left( t \right) + \mathrm{x{4 4 0}}\left( t \right) + \mathrm{x{4 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 3 9}}\left( t \right) \ \frac{dx{4 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 0}}\left( t \right) + \mathrm{x{4 0 8}}\left( t \right) + \mathrm{x{4 3 9}}\left( t \right) + \mathrm{x{4 4 1}}\left( t \right) + \mathrm{x{4 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 0}}\left( t \right) \ \frac{dx{4 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 1}}\left( t \right) + \mathrm{x{4 0 9}}\left( t \right) + \mathrm{x{4 4 0}}\left( t \right) + \mathrm{x{4 4 2}}\left( t \right) + \mathrm{x{4 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 1}}\left( t \right) \ \frac{dx{4 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 2}}\left( t \right) + \mathrm{x{4 1 0}}\left( t \right) + \mathrm{x{4 4 1}}\left( t \right) + \mathrm{x{4 4 3}}\left( t \right) + \mathrm{x{4 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 2}}\left( t \right) \ \frac{dx{4 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 3}}\left( t \right) + \mathrm{x{4 1 1}}\left( t \right) + \mathrm{x{4 4 2}}\left( t \right) + \mathrm{x{4 4 4}}\left( t \right) + \mathrm{x{4 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 3}}\left( t \right) \ \frac{dx{4 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 4}}\left( t \right) + \mathrm{x{4 1 2}}\left( t \right) + \mathrm{x{4 4 3}}\left( t \right) + \mathrm{x{4 4 5}}\left( t \right) + \mathrm{x{4 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 4}}\left( t \right) \ \frac{dx{4 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 5}}\left( t \right) + \mathrm{x{4 1 3}}\left( t \right) + \mathrm{x{4 4 4}}\left( t \right) + \mathrm{x{4 4 6}}\left( t \right) + \mathrm{x{4 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 5}}\left( t \right) \ \frac{dx{4 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 6}}\left( t \right) + \mathrm{x{4 1 4}}\left( t \right) + \mathrm{x{4 4 5}}\left( t \right) + \mathrm{x{4 4 7}}\left( t \right) + \mathrm{x{4 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 6}}\left( t \right) \ \frac{dx{4 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 7}}\left( t \right) + \mathrm{x{4 1 5}}\left( t \right) + \mathrm{x{4 4 6}}\left( t \right) + \mathrm{x{4 4 8}}\left( t \right) + \mathrm{x{4 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 7}}\left( t \right) \ \frac{dx{4 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 8}}\left( t \right) + \mathrm{x{4 1 6}}\left( t \right) + \mathrm{x{4 1 7}}\left( t \right) + \mathrm{x{4 4 7}}\left( t \right) + \mathrm{x{4 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 8}}\left( t \right) \ \frac{dx{4 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 4 9}}\left( t \right) + \mathrm{x{4 1 7}}\left( t \right) + \mathrm{x{4 5 0}}\left( t \right) + \mathrm{x{4 8 0}}\left( t \right) + \mathrm{x{4 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 4 9}}\left( t \right) \ \frac{dx{4 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 0}}\left( t \right) + \mathrm{x{4 1 8}}\left( t \right) + \mathrm{x{4 4 9}}\left( t \right) + \mathrm{x{4 5 1}}\left( t \right) + \mathrm{x{4 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 0}}\left( t \right) \ \frac{dx{4 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 1}}\left( t \right) + \mathrm{x{4 1 9}}\left( t \right) + \mathrm{x{4 5 0}}\left( t \right) + \mathrm{x{4 5 2}}\left( t \right) + \mathrm{x{4 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 1}}\left( t \right) \ \frac{dx{4 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 2}}\left( t \right) + \mathrm{x{4 2 0}}\left( t \right) + \mathrm{x{4 5 1}}\left( t \right) + \mathrm{x{4 5 3}}\left( t \right) + \mathrm{x{4 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 2}}\left( t \right) \ \frac{dx{4 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 3}}\left( t \right) + \mathrm{x{4 2 1}}\left( t \right) + \mathrm{x{4 5 2}}\left( t \right) + \mathrm{x{4 5 4}}\left( t \right) + \mathrm{x{4 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 3}}\left( t \right) \ \frac{dx{4 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 4}}\left( t \right) + \mathrm{x{4 2 2}}\left( t \right) + \mathrm{x{4 5 3}}\left( t \right) + \mathrm{x{4 5 5}}\left( t \right) + \mathrm{x{4 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 4}}\left( t \right) \ \frac{dx{4 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 5}}\left( t \right) + \mathrm{x{4 2 3}}\left( t \right) + \mathrm{x{4 5 4}}\left( t \right) + \mathrm{x{4 5 6}}\left( t \right) + \mathrm{x{4 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 5}}\left( t \right) \ \frac{dx{4 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 6}}\left( t \right) + \mathrm{x{4 2 4}}\left( t \right) + \mathrm{x{4 5 5}}\left( t \right) + \mathrm{x{4 5 7}}\left( t \right) + \mathrm{x{4 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 6}}\left( t \right) \ \frac{dx{4 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 7}}\left( t \right) + \mathrm{x{4 2 5}}\left( t \right) + \mathrm{x{4 5 6}}\left( t \right) + \mathrm{x{4 5 8}}\left( t \right) + \mathrm{x{4 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 7}}\left( t \right) \ \frac{dx{4 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 8}}\left( t \right) + \mathrm{x{4 2 6}}\left( t \right) + \mathrm{x{4 5 7}}\left( t \right) + \mathrm{x{4 5 9}}\left( t \right) + \mathrm{x{4 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 8}}\left( t \right) \ \frac{dx{4 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 5 9}}\left( t \right) + \mathrm{x{4 2 7}}\left( t \right) + \mathrm{x{4 5 8}}\left( t \right) + \mathrm{x{4 6 0}}\left( t \right) + \mathrm{x{4 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 5 9}}\left( t \right) \ \frac{dx{4 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 0}}\left( t \right) + \mathrm{x{4 2 8}}\left( t \right) + \mathrm{x{4 5 9}}\left( t \right) + \mathrm{x{4 6 1}}\left( t \right) + \mathrm{x{4 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 0}}\left( t \right) \ \frac{dx{4 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 1}}\left( t \right) + \mathrm{x{4 2 9}}\left( t \right) + \mathrm{x{4 6 0}}\left( t \right) + \mathrm{x{4 6 2}}\left( t \right) + \mathrm{x{4 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 1}}\left( t \right) \ \frac{dx{4 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 2}}\left( t \right) + \mathrm{x{4 3 0}}\left( t \right) + \mathrm{x{4 6 1}}\left( t \right) + \mathrm{x{4 6 3}}\left( t \right) + \mathrm{x{4 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 2}}\left( t \right) \ \frac{dx{4 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 3}}\left( t \right) + \mathrm{x{4 3 1}}\left( t \right) + \mathrm{x{4 6 2}}\left( t \right) + \mathrm{x{4 6 4}}\left( t \right) + \mathrm{x{4 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 3}}\left( t \right) \ \frac{dx{4 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 4}}\left( t \right) + \mathrm{x{4 3 2}}\left( t \right) + \mathrm{x{4 6 3}}\left( t \right) + \mathrm{x{4 6 5}}\left( t \right) + \mathrm{x{4 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 4}}\left( t \right) \ \frac{dx{4 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 5}}\left( t \right) + \mathrm{x{4 3 3}}\left( t \right) + \mathrm{x{4 6 4}}\left( t \right) + \mathrm{x{4 6 6}}\left( t \right) + \mathrm{x{4 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 5}}\left( t \right) \ \frac{dx{4 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 6}}\left( t \right) + \mathrm{x{4 3 4}}\left( t \right) + \mathrm{x{4 6 5}}\left( t \right) + \mathrm{x{4 6 7}}\left( t \right) + \mathrm{x{4 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 6}}\left( t \right) \ \frac{dx{4 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 7}}\left( t \right) + \mathrm{x{4 3 5}}\left( t \right) + \mathrm{x{4 6 6}}\left( t \right) + \mathrm{x{4 6 8}}\left( t \right) + \mathrm{x{4 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 7}}\left( t \right) \ \frac{dx{4 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 8}}\left( t \right) + \mathrm{x{4 3 6}}\left( t \right) + \mathrm{x{4 6 7}}\left( t \right) + \mathrm{x{4 6 9}}\left( t \right) + \mathrm{x{5 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 8}}\left( t \right) \ \frac{dx{4 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 6 9}}\left( t \right) + \mathrm{x{4 3 7}}\left( t \right) + \mathrm{x{4 6 8}}\left( t \right) + \mathrm{x{4 7 0}}\left( t \right) + \mathrm{x{5 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 6 9}}\left( t \right) \ \frac{dx{4 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 0}}\left( t \right) + \mathrm{x{4 3 8}}\left( t \right) + \mathrm{x{4 6 9}}\left( t \right) + \mathrm{x{4 7 1}}\left( t \right) + \mathrm{x{5 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 0}}\left( t \right) \ \frac{dx{4 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 1}}\left( t \right) + \mathrm{x{4 3 9}}\left( t \right) + \mathrm{x{4 7 0}}\left( t \right) + \mathrm{x{4 7 2}}\left( t \right) + \mathrm{x{5 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 1}}\left( t \right) \ \frac{dx{4 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 2}}\left( t \right) + \mathrm{x{4 4 0}}\left( t \right) + \mathrm{x{4 7 1}}\left( t \right) + \mathrm{x{4 7 3}}\left( t \right) + \mathrm{x{5 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 2}}\left( t \right) \ \frac{dx{4 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 3}}\left( t \right) + \mathrm{x{4 4 1}}\left( t \right) + \mathrm{x{4 7 2}}\left( t \right) + \mathrm{x{4 7 4}}\left( t \right) + \mathrm{x{5 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 3}}\left( t \right) \ \frac{dx{4 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 4}}\left( t \right) + \mathrm{x{4 4 2}}\left( t \right) + \mathrm{x{4 7 3}}\left( t \right) + \mathrm{x{4 7 5}}\left( t \right) + \mathrm{x{5 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 4}}\left( t \right) \ \frac{dx{4 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 5}}\left( t \right) + \mathrm{x{4 4 3}}\left( t \right) + \mathrm{x{4 7 4}}\left( t \right) + \mathrm{x{4 7 6}}\left( t \right) + \mathrm{x{5 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 5}}\left( t \right) \ \frac{dx{4 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 6}}\left( t \right) + \mathrm{x{4 4 4}}\left( t \right) + \mathrm{x{4 7 5}}\left( t \right) + \mathrm{x{4 7 7}}\left( t \right) + \mathrm{x{5 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 6}}\left( t \right) \ \frac{dx{4 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 7}}\left( t \right) + \mathrm{x{4 4 5}}\left( t \right) + \mathrm{x{4 7 6}}\left( t \right) + \mathrm{x{4 7 8}}\left( t \right) + \mathrm{x{5 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 7}}\left( t \right) \ \frac{dx{4 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 8}}\left( t \right) + \mathrm{x{4 4 6}}\left( t \right) + \mathrm{x{4 7 7}}\left( t \right) + \mathrm{x{4 7 9}}\left( t \right) + \mathrm{x{5 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 8}}\left( t \right) \ \frac{dx{4 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 7 9}}\left( t \right) + \mathrm{x{4 4 7}}\left( t \right) + \mathrm{x{4 7 8}}\left( t \right) + \mathrm{x{4 8 0}}\left( t \right) + \mathrm{x{5 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 7 9}}\left( t \right) \ \frac{dx{4 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 0}}\left( t \right) + \mathrm{x{4 4 8}}\left( t \right) + \mathrm{x{4 4 9}}\left( t \right) + \mathrm{x{4 7 9}}\left( t \right) + \mathrm{x{5 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 0}}\left( t \right) \ \frac{dx{4 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 1}}\left( t \right) + \mathrm{x{4 4 9}}\left( t \right) + \mathrm{x{4 8 2}}\left( t \right) + \mathrm{x{5 1 2}}\left( t \right) + \mathrm{x{5 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 1}}\left( t \right) \ \frac{dx{4 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 2}}\left( t \right) + \mathrm{x{4 5 0}}\left( t \right) + \mathrm{x{4 8 1}}\left( t \right) + \mathrm{x{4 8 3}}\left( t \right) + \mathrm{x{5 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 2}}\left( t \right) \ \frac{dx{4 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 3}}\left( t \right) + \mathrm{x{4 5 1}}\left( t \right) + \mathrm{x{4 8 2}}\left( t \right) + \mathrm{x{4 8 4}}\left( t \right) + \mathrm{x{5 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 3}}\left( t \right) \ \frac{dx{4 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 4}}\left( t \right) + \mathrm{x{4 5 2}}\left( t \right) + \mathrm{x{4 8 3}}\left( t \right) + \mathrm{x{4 8 5}}\left( t \right) + \mathrm{x{5 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 4}}\left( t \right) \ \frac{dx{4 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 5}}\left( t \right) + \mathrm{x{4 5 3}}\left( t \right) + \mathrm{x{4 8 4}}\left( t \right) + \mathrm{x{4 8 6}}\left( t \right) + \mathrm{x{5 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 5}}\left( t \right) \ \frac{dx{4 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 6}}\left( t \right) + \mathrm{x{4 5 4}}\left( t \right) + \mathrm{x{4 8 5}}\left( t \right) + \mathrm{x{4 8 7}}\left( t \right) + \mathrm{x{5 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 6}}\left( t \right) \ \frac{dx{4 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 7}}\left( t \right) + \mathrm{x{4 5 5}}\left( t \right) + \mathrm{x{4 8 6}}\left( t \right) + \mathrm{x{4 8 8}}\left( t \right) + \mathrm{x{5 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 7}}\left( t \right) \ \frac{dx{4 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 8}}\left( t \right) + \mathrm{x{4 5 6}}\left( t \right) + \mathrm{x{4 8 7}}\left( t \right) + \mathrm{x{4 8 9}}\left( t \right) + \mathrm{x{5 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 8}}\left( t \right) \ \frac{dx{4 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 8 9}}\left( t \right) + \mathrm{x{4 5 7}}\left( t \right) + \mathrm{x{4 8 8}}\left( t \right) + \mathrm{x{4 9 0}}\left( t \right) + \mathrm{x{5 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 8 9}}\left( t \right) \ \frac{dx{4 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 0}}\left( t \right) + \mathrm{x{4 5 8}}\left( t \right) + \mathrm{x{4 8 9}}\left( t \right) + \mathrm{x{4 9 1}}\left( t \right) + \mathrm{x{5 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 0}}\left( t \right) \ \frac{dx{4 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 1}}\left( t \right) + \mathrm{x{4 5 9}}\left( t \right) + \mathrm{x{4 9 0}}\left( t \right) + \mathrm{x{4 9 2}}\left( t \right) + \mathrm{x{5 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 1}}\left( t \right) \ \frac{dx{4 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 2}}\left( t \right) + \mathrm{x{4 6 0}}\left( t \right) + \mathrm{x{4 9 1}}\left( t \right) + \mathrm{x{4 9 3}}\left( t \right) + \mathrm{x{5 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 2}}\left( t \right) \ \frac{dx{4 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 3}}\left( t \right) + \mathrm{x{4 6 1}}\left( t \right) + \mathrm{x{4 9 2}}\left( t \right) + \mathrm{x{4 9 4}}\left( t \right) + \mathrm{x{5 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 3}}\left( t \right) \ \frac{dx{4 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 4}}\left( t \right) + \mathrm{x{4 6 2}}\left( t \right) + \mathrm{x{4 9 3}}\left( t \right) + \mathrm{x{4 9 5}}\left( t \right) + \mathrm{x{5 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 4}}\left( t \right) \ \frac{dx{4 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 5}}\left( t \right) + \mathrm{x{4 6 3}}\left( t \right) + \mathrm{x{4 9 4}}\left( t \right) + \mathrm{x{4 9 6}}\left( t \right) + \mathrm{x{5 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 5}}\left( t \right) \ \frac{dx{4 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 6}}\left( t \right) + \mathrm{x{4 6 4}}\left( t \right) + \mathrm{x{4 9 5}}\left( t \right) + \mathrm{x{4 9 7}}\left( t \right) + \mathrm{x{5 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 6}}\left( t \right) \ \frac{dx{4 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 7}}\left( t \right) + \mathrm{x{4 6 5}}\left( t \right) + \mathrm{x{4 9 6}}\left( t \right) + \mathrm{x{4 9 8}}\left( t \right) + \mathrm{x{5 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 7}}\left( t \right) \ \frac{dx{4 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 8}}\left( t \right) + \mathrm{x{4 6 6}}\left( t \right) + \mathrm{x{4 9 7}}\left( t \right) + \mathrm{x{4 9 9}}\left( t \right) + \mathrm{x{5 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 8}}\left( t \right) \ \frac{dx{4 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{4 9 9}}\left( t \right) + \mathrm{x{4 6 7}}\left( t \right) + \mathrm{x{4 9 8}}\left( t \right) + \mathrm{x{5 0 0}}\left( t \right) + \mathrm{x{5 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{4 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{4 9 9}}\left( t \right) \ \frac{dx{5 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 0}}\left( t \right) + \mathrm{x{4 6 8}}\left( t \right) + \mathrm{x{4 9 9}}\left( t \right) + \mathrm{x{5 0 1}}\left( t \right) + \mathrm{x{5 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 0}}\left( t \right) \ \frac{dx{5 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 1}}\left( t \right) + \mathrm{x{4 6 9}}\left( t \right) + \mathrm{x{5 0 0}}\left( t \right) + \mathrm{x{5 0 2}}\left( t \right) + \mathrm{x{5 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 1}}\left( t \right) \ \frac{dx{5 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 2}}\left( t \right) + \mathrm{x{4 7 0}}\left( t \right) + \mathrm{x{5 0 1}}\left( t \right) + \mathrm{x{5 0 3}}\left( t \right) + \mathrm{x{5 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 2}}\left( t \right) \ \frac{dx{5 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 3}}\left( t \right) + \mathrm{x{4 7 1}}\left( t \right) + \mathrm{x{5 0 2}}\left( t \right) + \mathrm{x{5 0 4}}\left( t \right) + \mathrm{x{5 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 3}}\left( t \right) \ \frac{dx{5 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 4}}\left( t \right) + \mathrm{x{4 7 2}}\left( t \right) + \mathrm{x{5 0 3}}\left( t \right) + \mathrm{x{5 0 5}}\left( t \right) + \mathrm{x{5 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 4}}\left( t \right) \ \frac{dx{5 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 5}}\left( t \right) + \mathrm{x{4 7 3}}\left( t \right) + \mathrm{x{5 0 4}}\left( t \right) + \mathrm{x{5 0 6}}\left( t \right) + \mathrm{x{5 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 5}}\left( t \right) \ \frac{dx{5 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 6}}\left( t \right) + \mathrm{x{4 7 4}}\left( t \right) + \mathrm{x{5 0 5}}\left( t \right) + \mathrm{x{5 0 7}}\left( t \right) + \mathrm{x{5 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 6}}\left( t \right) \ \frac{dx{5 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 7}}\left( t \right) + \mathrm{x{4 7 5}}\left( t \right) + \mathrm{x{5 0 6}}\left( t \right) + \mathrm{x{5 0 8}}\left( t \right) + \mathrm{x{5 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 7}}\left( t \right) \ \frac{dx{5 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 8}}\left( t \right) + \mathrm{x{4 7 6}}\left( t \right) + \mathrm{x{5 0 7}}\left( t \right) + \mathrm{x{5 0 9}}\left( t \right) + \mathrm{x{5 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 8}}\left( t \right) \ \frac{dx{5 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 0 9}}\left( t \right) + \mathrm{x{4 7 7}}\left( t \right) + \mathrm{x{5 0 8}}\left( t \right) + \mathrm{x{5 1 0}}\left( t \right) + \mathrm{x{5 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 0 9}}\left( t \right) \ \frac{dx{5 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 0}}\left( t \right) + \mathrm{x{4 7 8}}\left( t \right) + \mathrm{x{5 0 9}}\left( t \right) + \mathrm{x{5 1 1}}\left( t \right) + \mathrm{x{5 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 0}}\left( t \right) \ \frac{dx{5 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 1}}\left( t \right) + \mathrm{x{4 7 9}}\left( t \right) + \mathrm{x{5 1 0}}\left( t \right) + \mathrm{x{5 1 2}}\left( t \right) + \mathrm{x{5 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 1}}\left( t \right) \ \frac{dx{5 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 2}}\left( t \right) + \mathrm{x{4 8 0}}\left( t \right) + \mathrm{x{4 8 1}}\left( t \right) + \mathrm{x{5 1 1}}\left( t \right) + \mathrm{x{5 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 2}}\left( t \right) \ \frac{dx{5 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 3}}\left( t \right) + \mathrm{x{4 8 1}}\left( t \right) + \mathrm{x{5 1 4}}\left( t \right) + \mathrm{x{5 4 4}}\left( t \right) + \mathrm{x{5 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 3}}\left( t \right) \ \frac{dx{5 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 4}}\left( t \right) + \mathrm{x{4 8 2}}\left( t \right) + \mathrm{x{5 1 3}}\left( t \right) + \mathrm{x{5 1 5}}\left( t \right) + \mathrm{x{5 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 4}}\left( t \right) \ \frac{dx{5 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 5}}\left( t \right) + \mathrm{x{4 8 3}}\left( t \right) + \mathrm{x{5 1 4}}\left( t \right) + \mathrm{x{5 1 6}}\left( t \right) + \mathrm{x{5 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 5}}\left( t \right) \ \frac{dx{5 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 6}}\left( t \right) + \mathrm{x{4 8 4}}\left( t \right) + \mathrm{x{5 1 5}}\left( t \right) + \mathrm{x{5 1 7}}\left( t \right) + \mathrm{x{5 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 6}}\left( t \right) \ \frac{dx{5 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 7}}\left( t \right) + \mathrm{x{4 8 5}}\left( t \right) + \mathrm{x{5 1 6}}\left( t \right) + \mathrm{x{5 1 8}}\left( t \right) + \mathrm{x{5 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 7}}\left( t \right) \ \frac{dx{5 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 8}}\left( t \right) + \mathrm{x{4 8 6}}\left( t \right) + \mathrm{x{5 1 7}}\left( t \right) + \mathrm{x{5 1 9}}\left( t \right) + \mathrm{x{5 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 8}}\left( t \right) \ \frac{dx{5 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 1 9}}\left( t \right) + \mathrm{x{4 8 7}}\left( t \right) + \mathrm{x{5 1 8}}\left( t \right) + \mathrm{x{5 2 0}}\left( t \right) + \mathrm{x{5 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 1 9}}\left( t \right) \ \frac{dx{5 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 0}}\left( t \right) + \mathrm{x{4 8 8}}\left( t \right) + \mathrm{x{5 1 9}}\left( t \right) + \mathrm{x{5 2 1}}\left( t \right) + \mathrm{x{5 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 0}}\left( t \right) \ \frac{dx{5 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 1}}\left( t \right) + \mathrm{x{4 8 9}}\left( t \right) + \mathrm{x{5 2 0}}\left( t \right) + \mathrm{x{5 2 2}}\left( t \right) + \mathrm{x{5 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 5}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 1}}\left( t \right) \ \frac{dx{5 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 2}}\left( t \right) + \mathrm{x{4 9 0}}\left( t \right) + \mathrm{x{5 2 1}}\left( t \right) + \mathrm{x{5 2 3}}\left( t \right) + \mathrm{x{5 5 4}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 2}}\left( t \right) \ \frac{dx{5 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 3}}\left( t \right) + \mathrm{x{4 9 1}}\left( t \right) + \mathrm{x{5 2 2}}\left( t \right) + \mathrm{x{5 2 4}}\left( t \right) + \mathrm{x{5 5 5}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 3}}\left( t \right) \ \frac{dx{5 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 4}}\left( t \right) + \mathrm{x{4 9 2}}\left( t \right) + \mathrm{x{5 2 3}}\left( t \right) + \mathrm{x{5 2 5}}\left( t \right) + \mathrm{x{5 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 4}}\left( t \right) \ \frac{dx{5 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 5}}\left( t \right) + \mathrm{x{4 9 3}}\left( t \right) + \mathrm{x{5 2 4}}\left( t \right) + \mathrm{x{5 2 6}}\left( t \right) + \mathrm{x{5 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 5}}\left( t \right) \ \frac{dx{5 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 6}}\left( t \right) + \mathrm{x{4 9 4}}\left( t \right) + \mathrm{x{5 2 5}}\left( t \right) + \mathrm{x{5 2 7}}\left( t \right) + \mathrm{x{5 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 6}}\left( t \right) \ \frac{dx{5 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 7}}\left( t \right) + \mathrm{x{4 9 5}}\left( t \right) + \mathrm{x{5 2 6}}\left( t \right) + \mathrm{x{5 2 8}}\left( t \right) + \mathrm{x{5 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 7}}\left( t \right) \ \frac{dx{5 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 8}}\left( t \right) + \mathrm{x{4 9 6}}\left( t \right) + \mathrm{x{5 2 7}}\left( t \right) + \mathrm{x{5 2 9}}\left( t \right) + \mathrm{x{5 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 8}}\left( t \right) \ \frac{dx{5 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 2 9}}\left( t \right) + \mathrm{x{4 9 7}}\left( t \right) + \mathrm{x{5 2 8}}\left( t \right) + \mathrm{x{5 3 0}}\left( t \right) + \mathrm{x{5 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 2 9}}\left( t \right) \ \frac{dx{5 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 0}}\left( t \right) + \mathrm{x{4 9 8}}\left( t \right) + \mathrm{x{5 2 9}}\left( t \right) + \mathrm{x{5 3 1}}\left( t \right) + \mathrm{x{5 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 0}}\left( t \right) \ \frac{dx{5 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 1}}\left( t \right) + \mathrm{x{4 9 9}}\left( t \right) + \mathrm{x{5 3 0}}\left( t \right) + \mathrm{x{5 3 2}}\left( t \right) + \mathrm{x{5 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 1}}\left( t \right) \ \frac{dx{5 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 2}}\left( t \right) + \mathrm{x{5 0 0}}\left( t \right) + \mathrm{x{5 3 1}}\left( t \right) + \mathrm{x{5 3 3}}\left( t \right) + \mathrm{x{5 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 2}}\left( t \right) \ \frac{dx{5 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 3}}\left( t \right) + \mathrm{x{5 0 1}}\left( t \right) + \mathrm{x{5 3 2}}\left( t \right) + \mathrm{x{5 3 4}}\left( t \right) + \mathrm{x{5 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 3}}\left( t \right) \ \frac{dx{5 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 4}}\left( t \right) + \mathrm{x{5 0 2}}\left( t \right) + \mathrm{x{5 3 3}}\left( t \right) + \mathrm{x{5 3 5}}\left( t \right) + \mathrm{x{5 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 4}}\left( t \right) \ \frac{dx{5 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 5}}\left( t \right) + \mathrm{x{5 0 3}}\left( t \right) + \mathrm{x{5 3 4}}\left( t \right) + \mathrm{x{5 3 6}}\left( t \right) + \mathrm{x{5 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 5}}\left( t \right) \ \frac{dx{5 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 6}}\left( t \right) + \mathrm{x{5 0 4}}\left( t \right) + \mathrm{x{5 3 5}}\left( t \right) + \mathrm{x{5 3 7}}\left( t \right) + \mathrm{x{5 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 6}}\left( t \right) \ \frac{dx{5 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 7}}\left( t \right) + \mathrm{x{5 0 5}}\left( t \right) + \mathrm{x{5 3 6}}\left( t \right) + \mathrm{x{5 3 8}}\left( t \right) + \mathrm{x{5 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 7}}\left( t \right) \ \frac{dx{5 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 8}}\left( t \right) + \mathrm{x{5 0 6}}\left( t \right) + \mathrm{x{5 3 7}}\left( t \right) + \mathrm{x{5 3 9}}\left( t \right) + \mathrm{x{5 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 8}}\left( t \right) \ \frac{dx{5 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 3 9}}\left( t \right) + \mathrm{x{5 0 7}}\left( t \right) + \mathrm{x{5 3 8}}\left( t \right) + \mathrm{x{5 4 0}}\left( t \right) + \mathrm{x{5 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 3 9}}\left( t \right) \ \frac{dx{5 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 0}}\left( t \right) + \mathrm{x{5 0 8}}\left( t \right) + \mathrm{x{5 3 9}}\left( t \right) + \mathrm{x{5 4 1}}\left( t \right) + \mathrm{x{5 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 0}}\left( t \right) \ \frac{dx{5 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 1}}\left( t \right) + \mathrm{x{5 0 9}}\left( t \right) + \mathrm{x{5 4 0}}\left( t \right) + \mathrm{x{5 4 2}}\left( t \right) + \mathrm{x{5 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 1}}\left( t \right) \ \frac{dx{5 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 2}}\left( t \right) + \mathrm{x{5 1 0}}\left( t \right) + \mathrm{x{5 4 1}}\left( t \right) + \mathrm{x{5 4 3}}\left( t \right) + \mathrm{x{5 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 2}}\left( t \right) \ \frac{dx{5 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 3}}\left( t \right) + \mathrm{x{5 1 1}}\left( t \right) + \mathrm{x{5 4 2}}\left( t \right) + \mathrm{x{5 4 4}}\left( t \right) + \mathrm{x{5 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 3}}\left( t \right) \ \frac{dx{5 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 4}}\left( t \right) + \mathrm{x{5 1 2}}\left( t \right) + \mathrm{x{5 1 3}}\left( t \right) + \mathrm{x{5 4 3}}\left( t \right) + \mathrm{x{5 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 4}}\left( t \right) \ \frac{dx{5 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 5}}\left( t \right) + \mathrm{x{5 1 3}}\left( t \right) + \mathrm{x{5 4 6}}\left( t \right) + \mathrm{x{5 7 6}}\left( t \right) + \mathrm{x{5 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 5}}\left( t \right) \ \frac{dx{5 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 6}}\left( t \right) + \mathrm{x{5 1 4}}\left( t \right) + \mathrm{x{5 4 5}}\left( t \right) + \mathrm{x{5 4 7}}\left( t \right) + \mathrm{x{5 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 6}}\left( t \right) \ \frac{dx{5 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 7}}\left( t \right) + \mathrm{x{5 1 5}}\left( t \right) + \mathrm{x{5 4 6}}\left( t \right) + \mathrm{x{5 4 8}}\left( t \right) + \mathrm{x{5 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 7}}\left( t \right) \ \frac{dx{5 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 8}}\left( t \right) + \mathrm{x{5 1 6}}\left( t \right) + \mathrm{x{5 4 7}}\left( t \right) + \mathrm{x{5 4 9}}\left( t \right) + \mathrm{x{5 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 8}}\left( t \right) \ \frac{dx{5 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 4 9}}\left( t \right) + \mathrm{x{5 1 7}}\left( t \right) + \mathrm{x{5 4 8}}\left( t \right) + \mathrm{x{5 5 0}}\left( t \right) + \mathrm{x{5 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 4 9}}\left( t \right) \ \frac{dx{5 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 0}}\left( t \right) + \mathrm{x{5 1 8}}\left( t \right) + \mathrm{x{5 4 9}}\left( t \right) + \mathrm{x{5 5 1}}\left( t \right) + \mathrm{x{5 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 0}}\left( t \right) \ \frac{dx{5 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 1}}\left( t \right) + \mathrm{x{5 1 9}}\left( t \right) + \mathrm{x{5 5 0}}\left( t \right) + \mathrm{x{5 5 2}}\left( t \right) + \mathrm{x{5 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 1}}\left( t \right) \ \frac{dx{5 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 2}}\left( t \right) + \mathrm{x{5 2 0}}\left( t \right) + \mathrm{x{5 5 1}}\left( t \right) + \mathrm{x{5 5 3}}\left( t \right) + \mathrm{x{5 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 6}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 2}}\left( t \right) \ \frac{dx{5 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 3}}\left( t \right) + \mathrm{x{5 2 1}}\left( t \right) + \mathrm{x{5 5 2}}\left( t \right) + \mathrm{x{5 5 4}}\left( t \right) + \mathrm{x{5 8 5}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 3}}\left( t \right) \ \frac{dx{5 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 4}}\left( t \right) + \mathrm{x{5 2 2}}\left( t \right) + \mathrm{x{5 5 3}}\left( t \right) + \mathrm{x{5 5 5}}\left( t \right) + \mathrm{x{5 8 6}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 4}}\left( t \right) \ \frac{dx{5 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 5}}\left( t \right) + \mathrm{x{5 2 3}}\left( t \right) + \mathrm{x{5 5 4}}\left( t \right) + \mathrm{x{5 5 6}}\left( t \right) + \mathrm{x{5 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 9}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 5}}\left( t \right) \ \frac{dx{5 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 6}}\left( t \right) + \mathrm{x{5 2 4}}\left( t \right) + \mathrm{x{5 5 5}}\left( t \right) + \mathrm{x{5 5 7}}\left( t \right) + \mathrm{x{5 8 8}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 6}}\left( t \right) \ \frac{dx{5 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 7}}\left( t \right) + \mathrm{x{5 2 5}}\left( t \right) + \mathrm{x{5 5 6}}\left( t \right) + \mathrm{x{5 5 8}}\left( t \right) + \mathrm{x{5 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 7}}\left( t \right) \ \frac{dx{5 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 8}}\left( t \right) + \mathrm{x{5 2 6}}\left( t \right) + \mathrm{x{5 5 7}}\left( t \right) + \mathrm{x{5 5 9}}\left( t \right) + \mathrm{x{5 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 8}}\left( t \right) \ \frac{dx{5 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 5 9}}\left( t \right) + \mathrm{x{5 2 7}}\left( t \right) + \mathrm{x{5 5 8}}\left( t \right) + \mathrm{x{5 6 0}}\left( t \right) + \mathrm{x{5 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 5 9}}\left( t \right) \ \frac{dx{5 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 0}}\left( t \right) + \mathrm{x{5 2 8}}\left( t \right) + \mathrm{x{5 5 9}}\left( t \right) + \mathrm{x{5 6 1}}\left( t \right) + \mathrm{x{5 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 0}}\left( t \right) \ \frac{dx{5 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 1}}\left( t \right) + \mathrm{x{5 2 9}}\left( t \right) + \mathrm{x{5 6 0}}\left( t \right) + \mathrm{x{5 6 2}}\left( t \right) + \mathrm{x{5 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 1}}\left( t \right) \ \frac{dx{5 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 2}}\left( t \right) + \mathrm{x{5 3 0}}\left( t \right) + \mathrm{x{5 6 1}}\left( t \right) + \mathrm{x{5 6 3}}\left( t \right) + \mathrm{x{5 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 2}}\left( t \right) \ \frac{dx{5 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 3}}\left( t \right) + \mathrm{x{5 3 1}}\left( t \right) + \mathrm{x{5 6 2}}\left( t \right) + \mathrm{x{5 6 4}}\left( t \right) + \mathrm{x{5 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 3}}\left( t \right) \ \frac{dx{5 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 4}}\left( t \right) + \mathrm{x{5 3 2}}\left( t \right) + \mathrm{x{5 6 3}}\left( t \right) + \mathrm{x{5 6 5}}\left( t \right) + \mathrm{x{5 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 4}}\left( t \right) \ \frac{dx{5 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 5}}\left( t \right) + \mathrm{x{5 3 3}}\left( t \right) + \mathrm{x{5 6 4}}\left( t \right) + \mathrm{x{5 6 6}}\left( t \right) + \mathrm{x{5 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 5}}\left( t \right) \ \frac{dx{5 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 6}}\left( t \right) + \mathrm{x{5 3 4}}\left( t \right) + \mathrm{x{5 6 5}}\left( t \right) + \mathrm{x{5 6 7}}\left( t \right) + \mathrm{x{5 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 6}}\left( t \right) \ \frac{dx{5 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 7}}\left( t \right) + \mathrm{x{5 3 5}}\left( t \right) + \mathrm{x{5 6 6}}\left( t \right) + \mathrm{x{5 6 8}}\left( t \right) + \mathrm{x{5 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 7}}\left( t \right) \ \frac{dx{5 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 8}}\left( t \right) + \mathrm{x{5 3 6}}\left( t \right) + \mathrm{x{5 6 7}}\left( t \right) + \mathrm{x{5 6 9}}\left( t \right) + \mathrm{x{6 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 8}}\left( t \right) \ \frac{dx{5 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 6 9}}\left( t \right) + \mathrm{x{5 3 7}}\left( t \right) + \mathrm{x{5 6 8}}\left( t \right) + \mathrm{x{5 7 0}}\left( t \right) + \mathrm{x{6 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 6 9}}\left( t \right) \ \frac{dx{5 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 0}}\left( t \right) + \mathrm{x{5 3 8}}\left( t \right) + \mathrm{x{5 6 9}}\left( t \right) + \mathrm{x{5 7 1}}\left( t \right) + \mathrm{x{6 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 0}}\left( t \right) \ \frac{dx{5 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 1}}\left( t \right) + \mathrm{x{5 3 9}}\left( t \right) + \mathrm{x{5 7 0}}\left( t \right) + \mathrm{x{5 7 2}}\left( t \right) + \mathrm{x{6 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 1}}\left( t \right) \ \frac{dx{5 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 2}}\left( t \right) + \mathrm{x{5 4 0}}\left( t \right) + \mathrm{x{5 7 1}}\left( t \right) + \mathrm{x{5 7 3}}\left( t \right) + \mathrm{x{6 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 2}}\left( t \right) \ \frac{dx{5 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 3}}\left( t \right) + \mathrm{x{5 4 1}}\left( t \right) + \mathrm{x{5 7 2}}\left( t \right) + \mathrm{x{5 7 4}}\left( t \right) + \mathrm{x{6 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 3}}\left( t \right) \ \frac{dx{5 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 4}}\left( t \right) + \mathrm{x{5 4 2}}\left( t \right) + \mathrm{x{5 7 3}}\left( t \right) + \mathrm{x{5 7 5}}\left( t \right) + \mathrm{x{6 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 4}}\left( t \right) \ \frac{dx{5 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 5}}\left( t \right) + \mathrm{x{5 4 3}}\left( t \right) + \mathrm{x{5 7 4}}\left( t \right) + \mathrm{x{5 7 6}}\left( t \right) + \mathrm{x{6 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 5}}\left( t \right) \ \frac{dx{5 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 6}}\left( t \right) + \mathrm{x{5 4 4}}\left( t \right) + \mathrm{x{5 4 5}}\left( t \right) + \mathrm{x{5 7 5}}\left( t \right) + \mathrm{x{6 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 6}}\left( t \right) \ \frac{dx{5 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 7}}\left( t \right) + \mathrm{x{5 4 5}}\left( t \right) + \mathrm{x{5 7 8}}\left( t \right) + \mathrm{x{6 0 8}}\left( t \right) + \mathrm{x{6 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 7}}\left( t \right) \ \frac{dx{5 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 8}}\left( t \right) + \mathrm{x{5 4 6}}\left( t \right) + \mathrm{x{5 7 7}}\left( t \right) + \mathrm{x{5 7 9}}\left( t \right) + \mathrm{x{6 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 8}}\left( t \right) \ \frac{dx{5 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 7 9}}\left( t \right) + \mathrm{x{5 4 7}}\left( t \right) + \mathrm{x{5 7 8}}\left( t \right) + \mathrm{x{5 8 0}}\left( t \right) + \mathrm{x{6 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 7 9}}\left( t \right) \ \frac{dx{5 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 0}}\left( t \right) + \mathrm{x{5 4 8}}\left( t \right) + \mathrm{x{5 7 9}}\left( t \right) + \mathrm{x{5 8 1}}\left( t \right) + \mathrm{x{6 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 0}}\left( t \right) \ \frac{dx{5 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 1}}\left( t \right) + \mathrm{x{5 4 9}}\left( t \right) + \mathrm{x{5 8 0}}\left( t \right) + \mathrm{x{5 8 2}}\left( t \right) + \mathrm{x{6 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 1}}\left( t \right) \ \frac{dx{5 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 2}}\left( t \right) + \mathrm{x{5 5 0}}\left( t \right) + \mathrm{x{5 8 1}}\left( t \right) + \mathrm{x{5 8 3}}\left( t \right) + \mathrm{x{6 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 2}}\left( t \right) \ \frac{dx{5 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 3}}\left( t \right) + \mathrm{x{5 5 1}}\left( t \right) + \mathrm{x{5 8 2}}\left( t \right) + \mathrm{x{5 8 4}}\left( t \right) + \mathrm{x{6 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 3}}\left( t \right) \ \frac{dx{5 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 4}}\left( t \right) + \mathrm{x{5 5 2}}\left( t \right) + \mathrm{x{5 8 3}}\left( t \right) + \mathrm{x{5 8 5}}\left( t \right) + \mathrm{x{6 1 6}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 4}}\left( t \right) \ \frac{dx{5 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 5}}\left( t \right) + \mathrm{x{5 5 3}}\left( t \right) + \mathrm{x{5 8 4}}\left( t \right) + \mathrm{x{5 8 6}}\left( t \right) + \mathrm{x{6 1 7}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 5}}\left( t \right) \ \frac{dx{5 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 6}}\left( t \right) + \mathrm{x{5 5 4}}\left( t \right) + \mathrm{x{5 8 5}}\left( t \right) + \mathrm{x{5 8 7}}\left( t \right) + \mathrm{x{6 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 0}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 6}}\left( t \right) \ \frac{dx{5 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 7}}\left( t \right) + \mathrm{x{5 5 5}}\left( t \right) + \mathrm{x{5 8 6}}\left( t \right) + \mathrm{x{5 8 8}}\left( t \right) + \mathrm{x{6 1 9}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 7}}\left( t \right) \ \frac{dx{5 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 8}}\left( t \right) + \mathrm{x{5 5 6}}\left( t \right) + \mathrm{x{5 8 7}}\left( t \right) + \mathrm{x{5 8 9}}\left( t \right) + \mathrm{x{6 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 2}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 8}}\left( t \right) \ \frac{dx{5 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 8 9}}\left( t \right) + \mathrm{x{5 5 7}}\left( t \right) + \mathrm{x{5 8 8}}\left( t \right) + \mathrm{x{5 9 0}}\left( t \right) + \mathrm{x{6 2 1}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{5 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 8 9}}\left( t \right) \ \frac{dx{5 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 0}}\left( t \right) + \mathrm{x{5 5 8}}\left( t \right) + \mathrm{x{5 8 9}}\left( t \right) + \mathrm{x{5 9 1}}\left( t \right) + \mathrm{x{6 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 0}}\left( t \right) \ \frac{dx{5 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 1}}\left( t \right) + \mathrm{x{5 5 9}}\left( t \right) + \mathrm{x{5 9 0}}\left( t \right) + \mathrm{x{5 9 2}}\left( t \right) + \mathrm{x{6 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 1}}\left( t \right) \ \frac{dx{5 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 2}}\left( t \right) + \mathrm{x{5 6 0}}\left( t \right) + \mathrm{x{5 9 1}}\left( t \right) + \mathrm{x{5 9 3}}\left( t \right) + \mathrm{x{6 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 2}}\left( t \right) \ \frac{dx{5 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 3}}\left( t \right) + \mathrm{x{5 6 1}}\left( t \right) + \mathrm{x{5 9 2}}\left( t \right) + \mathrm{x{5 9 4}}\left( t \right) + \mathrm{x{6 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 3}}\left( t \right) \ \frac{dx{5 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 4}}\left( t \right) + \mathrm{x{5 6 2}}\left( t \right) + \mathrm{x{5 9 3}}\left( t \right) + \mathrm{x{5 9 5}}\left( t \right) + \mathrm{x{6 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 4}}\left( t \right) \ \frac{dx{5 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 5}}\left( t \right) + \mathrm{x{5 6 3}}\left( t \right) + \mathrm{x{5 9 4}}\left( t \right) + \mathrm{x{5 9 6}}\left( t \right) + \mathrm{x{6 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 5}}\left( t \right) \ \frac{dx{5 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 6}}\left( t \right) + \mathrm{x{5 6 4}}\left( t \right) + \mathrm{x{5 9 5}}\left( t \right) + \mathrm{x{5 9 7}}\left( t \right) + \mathrm{x{6 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 6}}\left( t \right) \ \frac{dx{5 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 7}}\left( t \right) + \mathrm{x{5 6 5}}\left( t \right) + \mathrm{x{5 9 6}}\left( t \right) + \mathrm{x{5 9 8}}\left( t \right) + \mathrm{x{6 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 7}}\left( t \right) \ \frac{dx{5 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 8}}\left( t \right) + \mathrm{x{5 6 6}}\left( t \right) + \mathrm{x{5 9 7}}\left( t \right) + \mathrm{x{5 9 9}}\left( t \right) + \mathrm{x{6 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 8}}\left( t \right) \ \frac{dx{5 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{5 9 9}}\left( t \right) + \mathrm{x{5 6 7}}\left( t \right) + \mathrm{x{5 9 8}}\left( t \right) + \mathrm{x{6 0 0}}\left( t \right) + \mathrm{x{6 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{5 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{5 9 9}}\left( t \right) \ \frac{dx{6 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 0}}\left( t \right) + \mathrm{x{5 6 8}}\left( t \right) + \mathrm{x{5 9 9}}\left( t \right) + \mathrm{x{6 0 1}}\left( t \right) + \mathrm{x{6 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 0}}\left( t \right) \ \frac{dx{6 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 1}}\left( t \right) + \mathrm{x{5 6 9}}\left( t \right) + \mathrm{x{6 0 0}}\left( t \right) + \mathrm{x{6 0 2}}\left( t \right) + \mathrm{x{6 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 1}}\left( t \right) \ \frac{dx{6 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 2}}\left( t \right) + \mathrm{x{5 7 0}}\left( t \right) + \mathrm{x{6 0 1}}\left( t \right) + \mathrm{x{6 0 3}}\left( t \right) + \mathrm{x{6 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 2}}\left( t \right) \ \frac{dx{6 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 3}}\left( t \right) + \mathrm{x{5 7 1}}\left( t \right) + \mathrm{x{6 0 2}}\left( t \right) + \mathrm{x{6 0 4}}\left( t \right) + \mathrm{x{6 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 3}}\left( t \right) \ \frac{dx{6 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 4}}\left( t \right) + \mathrm{x{5 7 2}}\left( t \right) + \mathrm{x{6 0 3}}\left( t \right) + \mathrm{x{6 0 5}}\left( t \right) + \mathrm{x{6 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 4}}\left( t \right) \ \frac{dx{6 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 5}}\left( t \right) + \mathrm{x{5 7 3}}\left( t \right) + \mathrm{x{6 0 4}}\left( t \right) + \mathrm{x{6 0 6}}\left( t \right) + \mathrm{x{6 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 5}}\left( t \right) \ \frac{dx{6 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 6}}\left( t \right) + \mathrm{x{5 7 4}}\left( t \right) + \mathrm{x{6 0 5}}\left( t \right) + \mathrm{x{6 0 7}}\left( t \right) + \mathrm{x{6 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 6}}\left( t \right) \ \frac{dx{6 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 7}}\left( t \right) + \mathrm{x{5 7 5}}\left( t \right) + \mathrm{x{6 0 6}}\left( t \right) + \mathrm{x{6 0 8}}\left( t \right) + \mathrm{x{6 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 7}}\left( t \right) \ \frac{dx{6 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 8}}\left( t \right) + \mathrm{x{5 7 6}}\left( t \right) + \mathrm{x{5 7 7}}\left( t \right) + \mathrm{x{6 0 7}}\left( t \right) + \mathrm{x{6 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 8}}\left( t \right) \ \frac{dx{6 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 0 9}}\left( t \right) + \mathrm{x{5 7 7}}\left( t \right) + \mathrm{x{6 1 0}}\left( t \right) + \mathrm{x{6 4 0}}\left( t \right) + \mathrm{x{6 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 0 9}}\left( t \right) \ \frac{dx{6 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 0}}\left( t \right) + \mathrm{x{5 7 8}}\left( t \right) + \mathrm{x{6 0 9}}\left( t \right) + \mathrm{x{6 1 1}}\left( t \right) + \mathrm{x{6 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 0}}\left( t \right) \ \frac{dx{6 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 1}}\left( t \right) + \mathrm{x{5 7 9}}\left( t \right) + \mathrm{x{6 1 0}}\left( t \right) + \mathrm{x{6 1 2}}\left( t \right) + \mathrm{x{6 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 1}}\left( t \right) \ \frac{dx{6 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 2}}\left( t \right) + \mathrm{x{5 8 0}}\left( t \right) + \mathrm{x{6 1 1}}\left( t \right) + \mathrm{x{6 1 3}}\left( t \right) + \mathrm{x{6 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 2}}\left( t \right) \ \frac{dx{6 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 3}}\left( t \right) + \mathrm{x{5 8 1}}\left( t \right) + \mathrm{x{6 1 2}}\left( t \right) + \mathrm{x{6 1 4}}\left( t \right) + \mathrm{x{6 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 3}}\left( t \right) \ \frac{dx{6 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 4}}\left( t \right) + \mathrm{x{5 8 2}}\left( t \right) + \mathrm{x{6 1 3}}\left( t \right) + \mathrm{x{6 1 5}}\left( t \right) + \mathrm{x{6 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 4}}\left( t \right) \ \frac{dx{6 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 5}}\left( t \right) + \mathrm{x{5 8 3}}\left( t \right) + \mathrm{x{6 1 4}}\left( t \right) + \mathrm{x{6 1 6}}\left( t \right) + \mathrm{x{6 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 5}}\left( t \right) \ \frac{dx{6 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 6}}\left( t \right) + \mathrm{x{5 8 4}}\left( t \right) + \mathrm{x{6 1 5}}\left( t \right) + \mathrm{x{6 1 7}}\left( t \right) + \mathrm{x{6 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 0}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 6}}\left( t \right) \ \frac{dx{6 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 7}}\left( t \right) + \mathrm{x{5 8 5}}\left( t \right) + \mathrm{x{6 1 6}}\left( t \right) + \mathrm{x{6 1 8}}\left( t \right) + \mathrm{x{6 4 9}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 7}}\left( t \right) \ \frac{dx{6 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 8}}\left( t \right) + \mathrm{x{5 8 6}}\left( t \right) + \mathrm{x{6 1 7}}\left( t \right) + \mathrm{x{6 1 9}}\left( t \right) + \mathrm{x{6 5 0}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 8}}\left( t \right) \ \frac{dx{6 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 1 9}}\left( t \right) + \mathrm{x{5 8 7}}\left( t \right) + \mathrm{x{6 1 8}}\left( t \right) + \mathrm{x{6 2 0}}\left( t \right) + \mathrm{x{6 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 3}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 1 9}}\left( t \right) \ \frac{dx{6 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 0}}\left( t \right) + \mathrm{x{5 8 8}}\left( t \right) + \mathrm{x{6 1 9}}\left( t \right) + \mathrm{x{6 2 1}}\left( t \right) + \mathrm{x{6 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 4}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 0}}\left( t \right) \ \frac{dx{6 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 1}}\left( t \right) + \mathrm{x{5 8 9}}\left( t \right) + \mathrm{x{6 2 0}}\left( t \right) + \mathrm{x{6 2 2}}\left( t \right) + \mathrm{x{6 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 5}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 1}}\left( t \right) \ \frac{dx{6 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 2}}\left( t \right) + \mathrm{x{5 9 0}}\left( t \right) + \mathrm{x{6 2 1}}\left( t \right) + \mathrm{x{6 2 3}}\left( t \right) + \mathrm{x{6 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 2}}\left( t \right) \ \frac{dx{6 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 3}}\left( t \right) + \mathrm{x{5 9 1}}\left( t \right) + \mathrm{x{6 2 2}}\left( t \right) + \mathrm{x{6 2 4}}\left( t \right) + \mathrm{x{6 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 3}}\left( t \right) \ \frac{dx{6 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 4}}\left( t \right) + \mathrm{x{5 9 2}}\left( t \right) + \mathrm{x{6 2 3}}\left( t \right) + \mathrm{x{6 2 5}}\left( t \right) + \mathrm{x{6 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 4}}\left( t \right) \ \frac{dx{6 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 5}}\left( t \right) + \mathrm{x{5 9 3}}\left( t \right) + \mathrm{x{6 2 4}}\left( t \right) + \mathrm{x{6 2 6}}\left( t \right) + \mathrm{x{6 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 5}}\left( t \right) \ \frac{dx{6 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 6}}\left( t \right) + \mathrm{x{5 9 4}}\left( t \right) + \mathrm{x{6 2 5}}\left( t \right) + \mathrm{x{6 2 7}}\left( t \right) + \mathrm{x{6 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 6}}\left( t \right) \ \frac{dx{6 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 7}}\left( t \right) + \mathrm{x{5 9 5}}\left( t \right) + \mathrm{x{6 2 6}}\left( t \right) + \mathrm{x{6 2 8}}\left( t \right) + \mathrm{x{6 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 7}}\left( t \right) \ \frac{dx{6 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 8}}\left( t \right) + \mathrm{x{5 9 6}}\left( t \right) + \mathrm{x{6 2 7}}\left( t \right) + \mathrm{x{6 2 9}}\left( t \right) + \mathrm{x{6 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 8}}\left( t \right) \ \frac{dx{6 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 2 9}}\left( t \right) + \mathrm{x{5 9 7}}\left( t \right) + \mathrm{x{6 2 8}}\left( t \right) + \mathrm{x{6 3 0}}\left( t \right) + \mathrm{x{6 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 2 9}}\left( t \right) \ \frac{dx{6 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 0}}\left( t \right) + \mathrm{x{5 9 8}}\left( t \right) + \mathrm{x{6 2 9}}\left( t \right) + \mathrm{x{6 3 1}}\left( t \right) + \mathrm{x{6 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 0}}\left( t \right) \ \frac{dx{6 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 1}}\left( t \right) + \mathrm{x{5 9 9}}\left( t \right) + \mathrm{x{6 3 0}}\left( t \right) + \mathrm{x{6 3 2}}\left( t \right) + \mathrm{x{6 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 1}}\left( t \right) \ \frac{dx{6 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 2}}\left( t \right) + \mathrm{x{6 0 0}}\left( t \right) + \mathrm{x{6 3 1}}\left( t \right) + \mathrm{x{6 3 3}}\left( t \right) + \mathrm{x{6 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 2}}\left( t \right) \ \frac{dx{6 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 3}}\left( t \right) + \mathrm{x{6 0 1}}\left( t \right) + \mathrm{x{6 3 2}}\left( t \right) + \mathrm{x{6 3 4}}\left( t \right) + \mathrm{x{6 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 3}}\left( t \right) \ \frac{dx{6 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 4}}\left( t \right) + \mathrm{x{6 0 2}}\left( t \right) + \mathrm{x{6 3 3}}\left( t \right) + \mathrm{x{6 3 5}}\left( t \right) + \mathrm{x{6 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 4}}\left( t \right) \ \frac{dx{6 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 5}}\left( t \right) + \mathrm{x{6 0 3}}\left( t \right) + \mathrm{x{6 3 4}}\left( t \right) + \mathrm{x{6 3 6}}\left( t \right) + \mathrm{x{6 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 5}}\left( t \right) \ \frac{dx{6 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 6}}\left( t \right) + \mathrm{x{6 0 4}}\left( t \right) + \mathrm{x{6 3 5}}\left( t \right) + \mathrm{x{6 3 7}}\left( t \right) + \mathrm{x{6 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 6}}\left( t \right) \ \frac{dx{6 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 7}}\left( t \right) + \mathrm{x{6 0 5}}\left( t \right) + \mathrm{x{6 3 6}}\left( t \right) + \mathrm{x{6 3 8}}\left( t \right) + \mathrm{x{6 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 7}}\left( t \right) \ \frac{dx{6 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 8}}\left( t \right) + \mathrm{x{6 0 6}}\left( t \right) + \mathrm{x{6 3 7}}\left( t \right) + \mathrm{x{6 3 9}}\left( t \right) + \mathrm{x{6 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 8}}\left( t \right) \ \frac{dx{6 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 3 9}}\left( t \right) + \mathrm{x{6 0 7}}\left( t \right) + \mathrm{x{6 3 8}}\left( t \right) + \mathrm{x{6 4 0}}\left( t \right) + \mathrm{x{6 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 3 9}}\left( t \right) \ \frac{dx{6 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 0}}\left( t \right) + \mathrm{x{6 0 8}}\left( t \right) + \mathrm{x{6 0 9}}\left( t \right) + \mathrm{x{6 3 9}}\left( t \right) + \mathrm{x{6 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 0}}\left( t \right) \ \frac{dx{6 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 1}}\left( t \right) + \mathrm{x{6 0 9}}\left( t \right) + \mathrm{x{6 4 2}}\left( t \right) + \mathrm{x{6 7 2}}\left( t \right) + \mathrm{x{6 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 1}}\left( t \right) \ \frac{dx{6 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 2}}\left( t \right) + \mathrm{x{6 1 0}}\left( t \right) + \mathrm{x{6 4 1}}\left( t \right) + \mathrm{x{6 4 3}}\left( t \right) + \mathrm{x{6 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 2}}\left( t \right) \ \frac{dx{6 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 3}}\left( t \right) + \mathrm{x{6 1 1}}\left( t \right) + \mathrm{x{6 4 2}}\left( t \right) + \mathrm{x{6 4 4}}\left( t \right) + \mathrm{x{6 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 3}}\left( t \right) \ \frac{dx{6 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 4}}\left( t \right) + \mathrm{x{6 1 2}}\left( t \right) + \mathrm{x{6 4 3}}\left( t \right) + \mathrm{x{6 4 5}}\left( t \right) + \mathrm{x{6 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 4}}\left( t \right) \ \frac{dx{6 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 5}}\left( t \right) + \mathrm{x{6 1 3}}\left( t \right) + \mathrm{x{6 4 4}}\left( t \right) + \mathrm{x{6 4 6}}\left( t \right) + \mathrm{x{6 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 5}}\left( t \right) \ \frac{dx{6 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 6}}\left( t \right) + \mathrm{x{6 1 4}}\left( t \right) + \mathrm{x{6 4 5}}\left( t \right) + \mathrm{x{6 4 7}}\left( t \right) + \mathrm{x{6 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 6}}\left( t \right) \ \frac{dx{6 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 7}}\left( t \right) + \mathrm{x{6 1 5}}\left( t \right) + \mathrm{x{6 4 6}}\left( t \right) + \mathrm{x{6 4 8}}\left( t \right) + \mathrm{x{6 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 7}}\left( t \right) \ \frac{dx{6 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 8}}\left( t \right) + \mathrm{x{6 1 6}}\left( t \right) + \mathrm{x{6 4 7}}\left( t \right) + \mathrm{x{6 4 9}}\left( t \right) + \mathrm{x{6 8 0}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 8}}\left( t \right) \ \frac{dx{6 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 4 9}}\left( t \right) + \mathrm{x{6 1 7}}\left( t \right) + \mathrm{x{6 4 8}}\left( t \right) + \mathrm{x{6 5 0}}\left( t \right) + \mathrm{x{6 8 1}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 4 9}}\left( t \right) \ \frac{dx{6 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 0}}\left( t \right) + \mathrm{x{6 1 8}}\left( t \right) + \mathrm{x{6 4 9}}\left( t \right) + \mathrm{x{6 5 1}}\left( t \right) + \mathrm{x{6 8 2}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 0}}\left( t \right) \ \frac{dx{6 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 1}}\left( t \right) + \mathrm{x{6 1 9}}\left( t \right) + \mathrm{x{6 5 0}}\left( t \right) + \mathrm{x{6 5 2}}\left( t \right) + \mathrm{x{6 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 5}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 1}}\left( t \right) \ \frac{dx{6 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 2}}\left( t \right) + \mathrm{x{6 2 0}}\left( t \right) + \mathrm{x{6 5 1}}\left( t \right) + \mathrm{x{6 5 3}}\left( t \right) + \mathrm{x{6 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 6}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 2}}\left( t \right) \ \frac{dx{6 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 3}}\left( t \right) + \mathrm{x{6 2 1}}\left( t \right) + \mathrm{x{6 5 2}}\left( t \right) + \mathrm{x{6 5 4}}\left( t \right) + \mathrm{x{6 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 7}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 3}}\left( t \right) \ \frac{dx{6 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 4}}\left( t \right) + \mathrm{x{6 2 2}}\left( t \right) + \mathrm{x{6 5 3}}\left( t \right) + \mathrm{x{6 5 5}}\left( t \right) + \mathrm{x{6 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 4}}\left( t \right) \ \frac{dx{6 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 5}}\left( t \right) + \mathrm{x{6 2 3}}\left( t \right) + \mathrm{x{6 5 4}}\left( t \right) + \mathrm{x{6 5 6}}\left( t \right) + \mathrm{x{6 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 5}}\left( t \right) \ \frac{dx{6 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 6}}\left( t \right) + \mathrm{x{6 2 4}}\left( t \right) + \mathrm{x{6 5 5}}\left( t \right) + \mathrm{x{6 5 7}}\left( t \right) + \mathrm{x{6 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 6}}\left( t \right) \ \frac{dx{6 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 7}}\left( t \right) + \mathrm{x{6 2 5}}\left( t \right) + \mathrm{x{6 5 6}}\left( t \right) + \mathrm{x{6 5 8}}\left( t \right) + \mathrm{x{6 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 7}}\left( t \right) \ \frac{dx{6 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 8}}\left( t \right) + \mathrm{x{6 2 6}}\left( t \right) + \mathrm{x{6 5 7}}\left( t \right) + \mathrm{x{6 5 9}}\left( t \right) + \mathrm{x{6 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 8}}\left( t \right) \ \frac{dx{6 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 5 9}}\left( t \right) + \mathrm{x{6 2 7}}\left( t \right) + \mathrm{x{6 5 8}}\left( t \right) + \mathrm{x{6 6 0}}\left( t \right) + \mathrm{x{6 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 5 9}}\left( t \right) \ \frac{dx{6 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 0}}\left( t \right) + \mathrm{x{6 2 8}}\left( t \right) + \mathrm{x{6 5 9}}\left( t \right) + \mathrm{x{6 6 1}}\left( t \right) + \mathrm{x{6 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 0}}\left( t \right) \ \frac{dx{6 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 1}}\left( t \right) + \mathrm{x{6 2 9}}\left( t \right) + \mathrm{x{6 6 0}}\left( t \right) + \mathrm{x{6 6 2}}\left( t \right) + \mathrm{x{6 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 1}}\left( t \right) \ \frac{dx{6 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 2}}\left( t \right) + \mathrm{x{6 3 0}}\left( t \right) + \mathrm{x{6 6 1}}\left( t \right) + \mathrm{x{6 6 3}}\left( t \right) + \mathrm{x{6 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 2}}\left( t \right) \ \frac{dx{6 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 3}}\left( t \right) + \mathrm{x{6 3 1}}\left( t \right) + \mathrm{x{6 6 2}}\left( t \right) + \mathrm{x{6 6 4}}\left( t \right) + \mathrm{x{6 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 3}}\left( t \right) \ \frac{dx{6 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 4}}\left( t \right) + \mathrm{x{6 3 2}}\left( t \right) + \mathrm{x{6 6 3}}\left( t \right) + \mathrm{x{6 6 5}}\left( t \right) + \mathrm{x{6 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 4}}\left( t \right) \ \frac{dx{6 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 5}}\left( t \right) + \mathrm{x{6 3 3}}\left( t \right) + \mathrm{x{6 6 4}}\left( t \right) + \mathrm{x{6 6 6}}\left( t \right) + \mathrm{x{6 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 5}}\left( t \right) \ \frac{dx{6 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 6}}\left( t \right) + \mathrm{x{6 3 4}}\left( t \right) + \mathrm{x{6 6 5}}\left( t \right) + \mathrm{x{6 6 7}}\left( t \right) + \mathrm{x{6 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 6}}\left( t \right) \ \frac{dx{6 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 7}}\left( t \right) + \mathrm{x{6 3 5}}\left( t \right) + \mathrm{x{6 6 6}}\left( t \right) + \mathrm{x{6 6 8}}\left( t \right) + \mathrm{x{6 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 7}}\left( t \right) \ \frac{dx{6 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 8}}\left( t \right) + \mathrm{x{6 3 6}}\left( t \right) + \mathrm{x{6 6 7}}\left( t \right) + \mathrm{x{6 6 9}}\left( t \right) + \mathrm{x{7 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 8}}\left( t \right) \ \frac{dx{6 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 6 9}}\left( t \right) + \mathrm{x{6 3 7}}\left( t \right) + \mathrm{x{6 6 8}}\left( t \right) + \mathrm{x{6 7 0}}\left( t \right) + \mathrm{x{7 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 6 9}}\left( t \right) \ \frac{dx{6 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 0}}\left( t \right) + \mathrm{x{6 3 8}}\left( t \right) + \mathrm{x{6 6 9}}\left( t \right) + \mathrm{x{6 7 1}}\left( t \right) + \mathrm{x{7 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 0}}\left( t \right) \ \frac{dx{6 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 1}}\left( t \right) + \mathrm{x{6 3 9}}\left( t \right) + \mathrm{x{6 7 0}}\left( t \right) + \mathrm{x{6 7 2}}\left( t \right) + \mathrm{x{7 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 1}}\left( t \right) \ \frac{dx{6 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 2}}\left( t \right) + \mathrm{x{6 4 0}}\left( t \right) + \mathrm{x{6 4 1}}\left( t \right) + \mathrm{x{6 7 1}}\left( t \right) + \mathrm{x{7 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 2}}\left( t \right) \ \frac{dx{6 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 3}}\left( t \right) + \mathrm{x{6 4 1}}\left( t \right) + \mathrm{x{6 7 4}}\left( t \right) + \mathrm{x{7 0 4}}\left( t \right) + \mathrm{x{7 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 3}}\left( t \right) \ \frac{dx{6 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 4}}\left( t \right) + \mathrm{x{6 4 2}}\left( t \right) + \mathrm{x{6 7 3}}\left( t \right) + \mathrm{x{6 7 5}}\left( t \right) + \mathrm{x{7 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 4}}\left( t \right) \ \frac{dx{6 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 5}}\left( t \right) + \mathrm{x{6 4 3}}\left( t \right) + \mathrm{x{6 7 4}}\left( t \right) + \mathrm{x{6 7 6}}\left( t \right) + \mathrm{x{7 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 5}}\left( t \right) \ \frac{dx{6 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 6}}\left( t \right) + \mathrm{x{6 4 4}}\left( t \right) + \mathrm{x{6 7 5}}\left( t \right) + \mathrm{x{6 7 7}}\left( t \right) + \mathrm{x{7 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 6}}\left( t \right) \ \frac{dx{6 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 7}}\left( t \right) + \mathrm{x{6 4 5}}\left( t \right) + \mathrm{x{6 7 6}}\left( t \right) + \mathrm{x{6 7 8}}\left( t \right) + \mathrm{x{7 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 7}}\left( t \right) \ \frac{dx{6 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 8}}\left( t \right) + \mathrm{x{6 4 6}}\left( t \right) + \mathrm{x{6 7 7}}\left( t \right) + \mathrm{x{6 7 9}}\left( t \right) + \mathrm{x{7 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 8}}\left( t \right) \ \frac{dx{6 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 7 9}}\left( t \right) + \mathrm{x{6 4 7}}\left( t \right) + \mathrm{x{6 7 8}}\left( t \right) + \mathrm{x{6 8 0}}\left( t \right) + \mathrm{x{7 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 7 9}}\left( t \right) \ \frac{dx{6 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 0}}\left( t \right) + \mathrm{x{6 4 8}}\left( t \right) + \mathrm{x{6 7 9}}\left( t \right) + \mathrm{x{6 8 1}}\left( t \right) + \mathrm{x{7 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 0}}\left( t \right) \ \frac{dx{6 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 1}}\left( t \right) + \mathrm{x{6 4 9}}\left( t \right) + \mathrm{x{6 8 0}}\left( t \right) + \mathrm{x{6 8 2}}\left( t \right) + \mathrm{x{7 1 3}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 1}}\left( t \right) \ \frac{dx{6 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 2}}\left( t \right) + \mathrm{x{6 5 0}}\left( t \right) + \mathrm{x{6 8 1}}\left( t \right) + \mathrm{x{6 8 3}}\left( t \right) + \mathrm{x{7 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 6}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 2}}\left( t \right) \ \frac{dx{6 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 3}}\left( t \right) + \mathrm{x{6 5 1}}\left( t \right) + \mathrm{x{6 8 2}}\left( t \right) + \mathrm{x{6 8 4}}\left( t \right) + \mathrm{x{7 1 5}}\left( t \right) \right)}{\alpha4^{2}} + 5.0 \left( t \geq 1.1 \right) + \left( \mathrm{x{6 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 3}}\left( t \right) \ \frac{dx{6 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 4}}\left( t \right) + \mathrm{x{6 5 2}}\left( t \right) + \mathrm{x{6 8 3}}\left( t \right) + \mathrm{x{6 8 5}}\left( t \right) + \mathrm{x{7 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 8}}\left( t \right) + 5.0 \left( t \geq 1.1 \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 4}}\left( t \right) \ \frac{dx{6 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 5}}\left( t \right) + \mathrm{x{6 5 3}}\left( t \right) + \mathrm{x{6 8 4}}\left( t \right) + \mathrm{x{6 8 6}}\left( t \right) + \mathrm{x{7 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 5}}\left( t \right) \ \frac{dx{6 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 6}}\left( t \right) + \mathrm{x{6 5 4}}\left( t \right) + \mathrm{x{6 8 5}}\left( t \right) + \mathrm{x{6 8 7}}\left( t \right) + \mathrm{x{7 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 6}}\left( t \right) \ \frac{dx{6 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 7}}\left( t \right) + \mathrm{x{6 5 5}}\left( t \right) + \mathrm{x{6 8 6}}\left( t \right) + \mathrm{x{6 8 8}}\left( t \right) + \mathrm{x{7 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 7}}\left( t \right) \ \frac{dx{6 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 8}}\left( t \right) + \mathrm{x{6 5 6}}\left( t \right) + \mathrm{x{6 8 7}}\left( t \right) + \mathrm{x{6 8 9}}\left( t \right) + \mathrm{x{7 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 8}}\left( t \right) \ \frac{dx{6 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 8 9}}\left( t \right) + \mathrm{x{6 5 7}}\left( t \right) + \mathrm{x{6 8 8}}\left( t \right) + \mathrm{x{6 9 0}}\left( t \right) + \mathrm{x{7 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 8 9}}\left( t \right) \ \frac{dx{6 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 0}}\left( t \right) + \mathrm{x{6 5 8}}\left( t \right) + \mathrm{x{6 8 9}}\left( t \right) + \mathrm{x{6 9 1}}\left( t \right) + \mathrm{x{7 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 0}}\left( t \right) \ \frac{dx{6 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 1}}\left( t \right) + \mathrm{x{6 5 9}}\left( t \right) + \mathrm{x{6 9 0}}\left( t \right) + \mathrm{x{6 9 2}}\left( t \right) + \mathrm{x{7 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 1}}\left( t \right) \ \frac{dx{6 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 2}}\left( t \right) + \mathrm{x{6 6 0}}\left( t \right) + \mathrm{x{6 9 1}}\left( t \right) + \mathrm{x{6 9 3}}\left( t \right) + \mathrm{x{7 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 2}}\left( t \right) \ \frac{dx{6 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 3}}\left( t \right) + \mathrm{x{6 6 1}}\left( t \right) + \mathrm{x{6 9 2}}\left( t \right) + \mathrm{x{6 9 4}}\left( t \right) + \mathrm{x{7 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 3}}\left( t \right) \ \frac{dx{6 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 4}}\left( t \right) + \mathrm{x{6 6 2}}\left( t \right) + \mathrm{x{6 9 3}}\left( t \right) + \mathrm{x{6 9 5}}\left( t \right) + \mathrm{x{7 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 4}}\left( t \right) \ \frac{dx{6 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 5}}\left( t \right) + \mathrm{x{6 6 3}}\left( t \right) + \mathrm{x{6 9 4}}\left( t \right) + \mathrm{x{6 9 6}}\left( t \right) + \mathrm{x{7 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 5}}\left( t \right) \ \frac{dx{6 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 6}}\left( t \right) + \mathrm{x{6 6 4}}\left( t \right) + \mathrm{x{6 9 5}}\left( t \right) + \mathrm{x{6 9 7}}\left( t \right) + \mathrm{x{7 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 6}}\left( t \right) \ \frac{dx{6 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 7}}\left( t \right) + \mathrm{x{6 6 5}}\left( t \right) + \mathrm{x{6 9 6}}\left( t \right) + \mathrm{x{6 9 8}}\left( t \right) + \mathrm{x{7 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 7}}\left( t \right) \ \frac{dx{6 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 8}}\left( t \right) + \mathrm{x{6 6 6}}\left( t \right) + \mathrm{x{6 9 7}}\left( t \right) + \mathrm{x{6 9 9}}\left( t \right) + \mathrm{x{7 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 8}}\left( t \right) \ \frac{dx{6 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{6 9 9}}\left( t \right) + \mathrm{x{6 6 7}}\left( t \right) + \mathrm{x{6 9 8}}\left( t \right) + \mathrm{x{7 0 0}}\left( t \right) + \mathrm{x{7 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{6 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{6 9 9}}\left( t \right) \ \frac{dx{7 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 0}}\left( t \right) + \mathrm{x{6 6 8}}\left( t \right) + \mathrm{x{6 9 9}}\left( t \right) + \mathrm{x{7 0 1}}\left( t \right) + \mathrm{x{7 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 0}}\left( t \right) \ \frac{dx{7 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 1}}\left( t \right) + \mathrm{x{6 6 9}}\left( t \right) + \mathrm{x{7 0 0}}\left( t \right) + \mathrm{x{7 0 2}}\left( t \right) + \mathrm{x{7 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 1}}\left( t \right) \ \frac{dx{7 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 2}}\left( t \right) + \mathrm{x{6 7 0}}\left( t \right) + \mathrm{x{7 0 1}}\left( t \right) + \mathrm{x{7 0 3}}\left( t \right) + \mathrm{x{7 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 2}}\left( t \right) \ \frac{dx{7 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 3}}\left( t \right) + \mathrm{x{6 7 1}}\left( t \right) + \mathrm{x{7 0 2}}\left( t \right) + \mathrm{x{7 0 4}}\left( t \right) + \mathrm{x{7 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 3}}\left( t \right) \ \frac{dx{7 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 4}}\left( t \right) + \mathrm{x{6 7 2}}\left( t \right) + \mathrm{x{6 7 3}}\left( t \right) + \mathrm{x{7 0 3}}\left( t \right) + \mathrm{x{7 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 4}}\left( t \right) \ \frac{dx{7 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 5}}\left( t \right) + \mathrm{x{6 7 3}}\left( t \right) + \mathrm{x{7 0 6}}\left( t \right) + \mathrm{x{7 3 6}}\left( t \right) + \mathrm{x{7 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 5}}\left( t \right) \ \frac{dx{7 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 6}}\left( t \right) + \mathrm{x{6 7 4}}\left( t \right) + \mathrm{x{7 0 5}}\left( t \right) + \mathrm{x{7 0 7}}\left( t \right) + \mathrm{x{7 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 6}}\left( t \right) \ \frac{dx{7 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 7}}\left( t \right) + \mathrm{x{6 7 5}}\left( t \right) + \mathrm{x{7 0 6}}\left( t \right) + \mathrm{x{7 0 8}}\left( t \right) + \mathrm{x{7 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 7}}\left( t \right) \ \frac{dx{7 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 8}}\left( t \right) + \mathrm{x{6 7 6}}\left( t \right) + \mathrm{x{7 0 7}}\left( t \right) + \mathrm{x{7 0 9}}\left( t \right) + \mathrm{x{7 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 8}}\left( t \right) \ \frac{dx{7 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 0 9}}\left( t \right) + \mathrm{x{6 7 7}}\left( t \right) + \mathrm{x{7 0 8}}\left( t \right) + \mathrm{x{7 1 0}}\left( t \right) + \mathrm{x{7 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 0 9}}\left( t \right) \ \frac{dx{7 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 0}}\left( t \right) + \mathrm{x{6 7 8}}\left( t \right) + \mathrm{x{7 0 9}}\left( t \right) + \mathrm{x{7 1 1}}\left( t \right) + \mathrm{x{7 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 0}}\left( t \right) \ \frac{dx{7 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 1}}\left( t \right) + \mathrm{x{6 7 9}}\left( t \right) + \mathrm{x{7 1 0}}\left( t \right) + \mathrm{x{7 1 2}}\left( t \right) + \mathrm{x{7 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 1}}\left( t \right) \ \frac{dx{7 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 2}}\left( t \right) + \mathrm{x{6 8 0}}\left( t \right) + \mathrm{x{7 1 1}}\left( t \right) + \mathrm{x{7 1 3}}\left( t \right) + \mathrm{x{7 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 2}}\left( t \right) \ \frac{dx{7 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 3}}\left( t \right) + \mathrm{x{6 8 1}}\left( t \right) + \mathrm{x{7 1 2}}\left( t \right) + \mathrm{x{7 1 4}}\left( t \right) + \mathrm{x{7 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 3}}\left( t \right) \ \frac{dx{7 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 4}}\left( t \right) + \mathrm{x{6 8 2}}\left( t \right) + \mathrm{x{7 1 3}}\left( t \right) + \mathrm{x{7 1 5}}\left( t \right) + \mathrm{x{7 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 4}}\left( t \right) \ \frac{dx{7 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 5}}\left( t \right) + \mathrm{x{6 8 3}}\left( t \right) + \mathrm{x{7 1 4}}\left( t \right) + \mathrm{x{7 1 6}}\left( t \right) + \mathrm{x{7 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 5}}\left( t \right) \ \frac{dx{7 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 6}}\left( t \right) + \mathrm{x{6 8 4}}\left( t \right) + \mathrm{x{7 1 5}}\left( t \right) + \mathrm{x{7 1 7}}\left( t \right) + \mathrm{x{7 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 6}}\left( t \right) \ \frac{dx{7 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 7}}\left( t \right) + \mathrm{x{6 8 5}}\left( t \right) + \mathrm{x{7 1 6}}\left( t \right) + \mathrm{x{7 1 8}}\left( t \right) + \mathrm{x{7 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 7}}\left( t \right) \ \frac{dx{7 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 8}}\left( t \right) + \mathrm{x{6 8 6}}\left( t \right) + \mathrm{x{7 1 7}}\left( t \right) + \mathrm{x{7 1 9}}\left( t \right) + \mathrm{x{7 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 8}}\left( t \right) \ \frac{dx{7 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 1 9}}\left( t \right) + \mathrm{x{6 8 7}}\left( t \right) + \mathrm{x{7 1 8}}\left( t \right) + \mathrm{x{7 2 0}}\left( t \right) + \mathrm{x{7 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 1 9}}\left( t \right) \ \frac{dx{7 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 0}}\left( t \right) + \mathrm{x{6 8 8}}\left( t \right) + \mathrm{x{7 1 9}}\left( t \right) + \mathrm{x{7 2 1}}\left( t \right) + \mathrm{x{7 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 0}}\left( t \right) \ \frac{dx{7 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 1}}\left( t \right) + \mathrm{x{6 8 9}}\left( t \right) + \mathrm{x{7 2 0}}\left( t \right) + \mathrm{x{7 2 2}}\left( t \right) + \mathrm{x{7 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 1}}\left( t \right) \ \frac{dx{7 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 2}}\left( t \right) + \mathrm{x{6 9 0}}\left( t \right) + \mathrm{x{7 2 1}}\left( t \right) + \mathrm{x{7 2 3}}\left( t \right) + \mathrm{x{7 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 2}}\left( t \right) \ \frac{dx{7 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 3}}\left( t \right) + \mathrm{x{6 9 1}}\left( t \right) + \mathrm{x{7 2 2}}\left( t \right) + \mathrm{x{7 2 4}}\left( t \right) + \mathrm{x{7 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 3}}\left( t \right) \ \frac{dx{7 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 4}}\left( t \right) + \mathrm{x{6 9 2}}\left( t \right) + \mathrm{x{7 2 3}}\left( t \right) + \mathrm{x{7 2 5}}\left( t \right) + \mathrm{x{7 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 4}}\left( t \right) \ \frac{dx{7 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 5}}\left( t \right) + \mathrm{x{6 9 3}}\left( t \right) + \mathrm{x{7 2 4}}\left( t \right) + \mathrm{x{7 2 6}}\left( t \right) + \mathrm{x{7 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 5}}\left( t \right) \ \frac{dx{7 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 6}}\left( t \right) + \mathrm{x{6 9 4}}\left( t \right) + \mathrm{x{7 2 5}}\left( t \right) + \mathrm{x{7 2 7}}\left( t \right) + \mathrm{x{7 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 6}}\left( t \right) \ \frac{dx{7 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 7}}\left( t \right) + \mathrm{x{6 9 5}}\left( t \right) + \mathrm{x{7 2 6}}\left( t \right) + \mathrm{x{7 2 8}}\left( t \right) + \mathrm{x{7 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 7}}\left( t \right) \ \frac{dx{7 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 8}}\left( t \right) + \mathrm{x{6 9 6}}\left( t \right) + \mathrm{x{7 2 7}}\left( t \right) + \mathrm{x{7 2 9}}\left( t \right) + \mathrm{x{7 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 8}}\left( t \right) \ \frac{dx{7 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 2 9}}\left( t \right) + \mathrm{x{6 9 7}}\left( t \right) + \mathrm{x{7 2 8}}\left( t \right) + \mathrm{x{7 3 0}}\left( t \right) + \mathrm{x{7 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 2 9}}\left( t \right) \ \frac{dx{7 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 0}}\left( t \right) + \mathrm{x{6 9 8}}\left( t \right) + \mathrm{x{7 2 9}}\left( t \right) + \mathrm{x{7 3 1}}\left( t \right) + \mathrm{x{7 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 0}}\left( t \right) \ \frac{dx{7 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 1}}\left( t \right) + \mathrm{x{6 9 9}}\left( t \right) + \mathrm{x{7 3 0}}\left( t \right) + \mathrm{x{7 3 2}}\left( t \right) + \mathrm{x{7 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 1}}\left( t \right) \ \frac{dx{7 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 2}}\left( t \right) + \mathrm{x{7 0 0}}\left( t \right) + \mathrm{x{7 3 1}}\left( t \right) + \mathrm{x{7 3 3}}\left( t \right) + \mathrm{x{7 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 2}}\left( t \right) \ \frac{dx{7 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 3}}\left( t \right) + \mathrm{x{7 0 1}}\left( t \right) + \mathrm{x{7 3 2}}\left( t \right) + \mathrm{x{7 3 4}}\left( t \right) + \mathrm{x{7 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 3}}\left( t \right) \ \frac{dx{7 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 4}}\left( t \right) + \mathrm{x{7 0 2}}\left( t \right) + \mathrm{x{7 3 3}}\left( t \right) + \mathrm{x{7 3 5}}\left( t \right) + \mathrm{x{7 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 4}}\left( t \right) \ \frac{dx{7 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 5}}\left( t \right) + \mathrm{x{7 0 3}}\left( t \right) + \mathrm{x{7 3 4}}\left( t \right) + \mathrm{x{7 3 6}}\left( t \right) + \mathrm{x{7 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 5}}\left( t \right) \ \frac{dx{7 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 6}}\left( t \right) + \mathrm{x{7 0 4}}\left( t \right) + \mathrm{x{7 0 5}}\left( t \right) + \mathrm{x{7 3 5}}\left( t \right) + \mathrm{x{7 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 6}}\left( t \right) \ \frac{dx{7 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 7}}\left( t \right) + \mathrm{x{7 0 5}}\left( t \right) + \mathrm{x{7 3 8}}\left( t \right) + \mathrm{x{7 6 8}}\left( t \right) + \mathrm{x{7 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 7}}\left( t \right) \ \frac{dx{7 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 8}}\left( t \right) + \mathrm{x{7 0 6}}\left( t \right) + \mathrm{x{7 3 7}}\left( t \right) + \mathrm{x{7 3 9}}\left( t \right) + \mathrm{x{7 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 8}}\left( t \right) \ \frac{dx{7 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 3 9}}\left( t \right) + \mathrm{x{7 0 7}}\left( t \right) + \mathrm{x{7 3 8}}\left( t \right) + \mathrm{x{7 4 0}}\left( t \right) + \mathrm{x{7 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 3 9}}\left( t \right) \ \frac{dx{7 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 0}}\left( t \right) + \mathrm{x{7 0 8}}\left( t \right) + \mathrm{x{7 3 9}}\left( t \right) + \mathrm{x{7 4 1}}\left( t \right) + \mathrm{x{7 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 0}}\left( t \right) \ \frac{dx{7 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 1}}\left( t \right) + \mathrm{x{7 0 9}}\left( t \right) + \mathrm{x{7 4 0}}\left( t \right) + \mathrm{x{7 4 2}}\left( t \right) + \mathrm{x{7 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 1}}\left( t \right) \ \frac{dx{7 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 2}}\left( t \right) + \mathrm{x{7 1 0}}\left( t \right) + \mathrm{x{7 4 1}}\left( t \right) + \mathrm{x{7 4 3}}\left( t \right) + \mathrm{x{7 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 2}}\left( t \right) \ \frac{dx{7 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 3}}\left( t \right) + \mathrm{x{7 1 1}}\left( t \right) + \mathrm{x{7 4 2}}\left( t \right) + \mathrm{x{7 4 4}}\left( t \right) + \mathrm{x{7 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 3}}\left( t \right) \ \frac{dx{7 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 4}}\left( t \right) + \mathrm{x{7 1 2}}\left( t \right) + \mathrm{x{7 4 3}}\left( t \right) + \mathrm{x{7 4 5}}\left( t \right) + \mathrm{x{7 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 4}}\left( t \right) \ \frac{dx{7 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 5}}\left( t \right) + \mathrm{x{7 1 3}}\left( t \right) + \mathrm{x{7 4 4}}\left( t \right) + \mathrm{x{7 4 6}}\left( t \right) + \mathrm{x{7 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 5}}\left( t \right) \ \frac{dx{7 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 6}}\left( t \right) + \mathrm{x{7 1 4}}\left( t \right) + \mathrm{x{7 4 5}}\left( t \right) + \mathrm{x{7 4 7}}\left( t \right) + \mathrm{x{7 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 6}}\left( t \right) \ \frac{dx{7 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 7}}\left( t \right) + \mathrm{x{7 1 5}}\left( t \right) + \mathrm{x{7 4 6}}\left( t \right) + \mathrm{x{7 4 8}}\left( t \right) + \mathrm{x{7 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 7}}\left( t \right) \ \frac{dx{7 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 8}}\left( t \right) + \mathrm{x{7 1 6}}\left( t \right) + \mathrm{x{7 4 7}}\left( t \right) + \mathrm{x{7 4 9}}\left( t \right) + \mathrm{x{7 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 8}}\left( t \right) \ \frac{dx{7 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 4 9}}\left( t \right) + \mathrm{x{7 1 7}}\left( t \right) + \mathrm{x{7 4 8}}\left( t \right) + \mathrm{x{7 5 0}}\left( t \right) + \mathrm{x{7 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 4 9}}\left( t \right) \ \frac{dx{7 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 0}}\left( t \right) + \mathrm{x{7 1 8}}\left( t \right) + \mathrm{x{7 4 9}}\left( t \right) + \mathrm{x{7 5 1}}\left( t \right) + \mathrm{x{7 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 0}}\left( t \right) \ \frac{dx{7 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 1}}\left( t \right) + \mathrm{x{7 1 9}}\left( t \right) + \mathrm{x{7 5 0}}\left( t \right) + \mathrm{x{7 5 2}}\left( t \right) + \mathrm{x{7 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 1}}\left( t \right) \ \frac{dx{7 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 2}}\left( t \right) + \mathrm{x{7 2 0}}\left( t \right) + \mathrm{x{7 5 1}}\left( t \right) + \mathrm{x{7 5 3}}\left( t \right) + \mathrm{x{7 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 2}}\left( t \right) \ \frac{dx{7 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 3}}\left( t \right) + \mathrm{x{7 2 1}}\left( t \right) + \mathrm{x{7 5 2}}\left( t \right) + \mathrm{x{7 5 4}}\left( t \right) + \mathrm{x{7 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 3}}\left( t \right) \ \frac{dx{7 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 4}}\left( t \right) + \mathrm{x{7 2 2}}\left( t \right) + \mathrm{x{7 5 3}}\left( t \right) + \mathrm{x{7 5 5}}\left( t \right) + \mathrm{x{7 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 4}}\left( t \right) \ \frac{dx{7 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 5}}\left( t \right) + \mathrm{x{7 2 3}}\left( t \right) + \mathrm{x{7 5 4}}\left( t \right) + \mathrm{x{7 5 6}}\left( t \right) + \mathrm{x{7 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 5}}\left( t \right) \ \frac{dx{7 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 6}}\left( t \right) + \mathrm{x{7 2 4}}\left( t \right) + \mathrm{x{7 5 5}}\left( t \right) + \mathrm{x{7 5 7}}\left( t \right) + \mathrm{x{7 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 6}}\left( t \right) \ \frac{dx{7 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 7}}\left( t \right) + \mathrm{x{7 2 5}}\left( t \right) + \mathrm{x{7 5 6}}\left( t \right) + \mathrm{x{7 5 8}}\left( t \right) + \mathrm{x{7 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 7}}\left( t \right) \ \frac{dx{7 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 8}}\left( t \right) + \mathrm{x{7 2 6}}\left( t \right) + \mathrm{x{7 5 7}}\left( t \right) + \mathrm{x{7 5 9}}\left( t \right) + \mathrm{x{7 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 8}}\left( t \right) \ \frac{dx{7 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 5 9}}\left( t \right) + \mathrm{x{7 2 7}}\left( t \right) + \mathrm{x{7 5 8}}\left( t \right) + \mathrm{x{7 6 0}}\left( t \right) + \mathrm{x{7 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 5 9}}\left( t \right) \ \frac{dx{7 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 0}}\left( t \right) + \mathrm{x{7 2 8}}\left( t \right) + \mathrm{x{7 5 9}}\left( t \right) + \mathrm{x{7 6 1}}\left( t \right) + \mathrm{x{7 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 0}}\left( t \right) \ \frac{dx{7 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 1}}\left( t \right) + \mathrm{x{7 2 9}}\left( t \right) + \mathrm{x{7 6 0}}\left( t \right) + \mathrm{x{7 6 2}}\left( t \right) + \mathrm{x{7 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 1}}\left( t \right) \ \frac{dx{7 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 2}}\left( t \right) + \mathrm{x{7 3 0}}\left( t \right) + \mathrm{x{7 6 1}}\left( t \right) + \mathrm{x{7 6 3}}\left( t \right) + \mathrm{x{7 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 2}}\left( t \right) \ \frac{dx{7 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 3}}\left( t \right) + \mathrm{x{7 3 1}}\left( t \right) + \mathrm{x{7 6 2}}\left( t \right) + \mathrm{x{7 6 4}}\left( t \right) + \mathrm{x{7 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 3}}\left( t \right) \ \frac{dx{7 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 4}}\left( t \right) + \mathrm{x{7 3 2}}\left( t \right) + \mathrm{x{7 6 3}}\left( t \right) + \mathrm{x{7 6 5}}\left( t \right) + \mathrm{x{7 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 4}}\left( t \right) \ \frac{dx{7 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 5}}\left( t \right) + \mathrm{x{7 3 3}}\left( t \right) + \mathrm{x{7 6 4}}\left( t \right) + \mathrm{x{7 6 6}}\left( t \right) + \mathrm{x{7 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 5}}\left( t \right) \ \frac{dx{7 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 6}}\left( t \right) + \mathrm{x{7 3 4}}\left( t \right) + \mathrm{x{7 6 5}}\left( t \right) + \mathrm{x{7 6 7}}\left( t \right) + \mathrm{x{7 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 6}}\left( t \right) \ \frac{dx{7 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 7}}\left( t \right) + \mathrm{x{7 3 5}}\left( t \right) + \mathrm{x{7 6 6}}\left( t \right) + \mathrm{x{7 6 8}}\left( t \right) + \mathrm{x{7 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 7}}\left( t \right) \ \frac{dx{7 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 8}}\left( t \right) + \mathrm{x{7 3 6}}\left( t \right) + \mathrm{x{7 3 7}}\left( t \right) + \mathrm{x{7 6 7}}\left( t \right) + \mathrm{x{8 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 8}}\left( t \right) \ \frac{dx{7 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 6 9}}\left( t \right) + \mathrm{x{7 3 7}}\left( t \right) + \mathrm{x{7 7 0}}\left( t \right) + \mathrm{x{8 0 0}}\left( t \right) + \mathrm{x{8 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 6 9}}\left( t \right) \ \frac{dx{7 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 0}}\left( t \right) + \mathrm{x{7 3 8}}\left( t \right) + \mathrm{x{7 6 9}}\left( t \right) + \mathrm{x{7 7 1}}\left( t \right) + \mathrm{x{8 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 0}}\left( t \right) \ \frac{dx{7 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 1}}\left( t \right) + \mathrm{x{7 3 9}}\left( t \right) + \mathrm{x{7 7 0}}\left( t \right) + \mathrm{x{7 7 2}}\left( t \right) + \mathrm{x{8 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 1}}\left( t \right) \ \frac{dx{7 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 2}}\left( t \right) + \mathrm{x{7 4 0}}\left( t \right) + \mathrm{x{7 7 1}}\left( t \right) + \mathrm{x{7 7 3}}\left( t \right) + \mathrm{x{8 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 2}}\left( t \right) \ \frac{dx{7 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 3}}\left( t \right) + \mathrm{x{7 4 1}}\left( t \right) + \mathrm{x{7 7 2}}\left( t \right) + \mathrm{x{7 7 4}}\left( t \right) + \mathrm{x{8 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 3}}\left( t \right) \ \frac{dx{7 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 4}}\left( t \right) + \mathrm{x{7 4 2}}\left( t \right) + \mathrm{x{7 7 3}}\left( t \right) + \mathrm{x{7 7 5}}\left( t \right) + \mathrm{x{8 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 4}}\left( t \right) \ \frac{dx{7 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 5}}\left( t \right) + \mathrm{x{7 4 3}}\left( t \right) + \mathrm{x{7 7 4}}\left( t \right) + \mathrm{x{7 7 6}}\left( t \right) + \mathrm{x{8 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 5}}\left( t \right) \ \frac{dx{7 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 6}}\left( t \right) + \mathrm{x{7 4 4}}\left( t \right) + \mathrm{x{7 7 5}}\left( t \right) + \mathrm{x{7 7 7}}\left( t \right) + \mathrm{x{8 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 6}}\left( t \right) \ \frac{dx{7 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 7}}\left( t \right) + \mathrm{x{7 4 5}}\left( t \right) + \mathrm{x{7 7 6}}\left( t \right) + \mathrm{x{7 7 8}}\left( t \right) + \mathrm{x{8 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 7}}\left( t \right) \ \frac{dx{7 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 8}}\left( t \right) + \mathrm{x{7 4 6}}\left( t \right) + \mathrm{x{7 7 7}}\left( t \right) + \mathrm{x{7 7 9}}\left( t \right) + \mathrm{x{8 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 8}}\left( t \right) \ \frac{dx{7 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 7 9}}\left( t \right) + \mathrm{x{7 4 7}}\left( t \right) + \mathrm{x{7 7 8}}\left( t \right) + \mathrm{x{7 8 0}}\left( t \right) + \mathrm{x{8 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 7 9}}\left( t \right) \ \frac{dx{7 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 0}}\left( t \right) + \mathrm{x{7 4 8}}\left( t \right) + \mathrm{x{7 7 9}}\left( t \right) + \mathrm{x{7 8 1}}\left( t \right) + \mathrm{x{8 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 0}}\left( t \right) \ \frac{dx{7 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 1}}\left( t \right) + \mathrm{x{7 4 9}}\left( t \right) + \mathrm{x{7 8 0}}\left( t \right) + \mathrm{x{7 8 2}}\left( t \right) + \mathrm{x{8 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 1}}\left( t \right) \ \frac{dx{7 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 2}}\left( t \right) + \mathrm{x{7 5 0}}\left( t \right) + \mathrm{x{7 8 1}}\left( t \right) + \mathrm{x{7 8 3}}\left( t \right) + \mathrm{x{8 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 2}}\left( t \right) \ \frac{dx{7 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 3}}\left( t \right) + \mathrm{x{7 5 1}}\left( t \right) + \mathrm{x{7 8 2}}\left( t \right) + \mathrm{x{7 8 4}}\left( t \right) + \mathrm{x{8 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 3}}\left( t \right) \ \frac{dx{7 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 4}}\left( t \right) + \mathrm{x{7 5 2}}\left( t \right) + \mathrm{x{7 8 3}}\left( t \right) + \mathrm{x{7 8 5}}\left( t \right) + \mathrm{x{8 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 4}}\left( t \right) \ \frac{dx{7 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 5}}\left( t \right) + \mathrm{x{7 5 3}}\left( t \right) + \mathrm{x{7 8 4}}\left( t \right) + \mathrm{x{7 8 6}}\left( t \right) + \mathrm{x{8 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 5}}\left( t \right) \ \frac{dx{7 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 6}}\left( t \right) + \mathrm{x{7 5 4}}\left( t \right) + \mathrm{x{7 8 5}}\left( t \right) + \mathrm{x{7 8 7}}\left( t \right) + \mathrm{x{8 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 6}}\left( t \right) \ \frac{dx{7 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 7}}\left( t \right) + \mathrm{x{7 5 5}}\left( t \right) + \mathrm{x{7 8 6}}\left( t \right) + \mathrm{x{7 8 8}}\left( t \right) + \mathrm{x{8 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 7}}\left( t \right) \ \frac{dx{7 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 8}}\left( t \right) + \mathrm{x{7 5 6}}\left( t \right) + \mathrm{x{7 8 7}}\left( t \right) + \mathrm{x{7 8 9}}\left( t \right) + \mathrm{x{8 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 8}}\left( t \right) \ \frac{dx{7 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 8 9}}\left( t \right) + \mathrm{x{7 5 7}}\left( t \right) + \mathrm{x{7 8 8}}\left( t \right) + \mathrm{x{7 9 0}}\left( t \right) + \mathrm{x{8 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 8 9}}\left( t \right) \ \frac{dx{7 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 0}}\left( t \right) + \mathrm{x{7 5 8}}\left( t \right) + \mathrm{x{7 8 9}}\left( t \right) + \mathrm{x{7 9 1}}\left( t \right) + \mathrm{x{8 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 0}}\left( t \right) \ \frac{dx{7 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 1}}\left( t \right) + \mathrm{x{7 5 9}}\left( t \right) + \mathrm{x{7 9 0}}\left( t \right) + \mathrm{x{7 9 2}}\left( t \right) + \mathrm{x{8 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 1}}\left( t \right) \ \frac{dx{7 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 2}}\left( t \right) + \mathrm{x{7 6 0}}\left( t \right) + \mathrm{x{7 9 1}}\left( t \right) + \mathrm{x{7 9 3}}\left( t \right) + \mathrm{x{8 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 2}}\left( t \right) \ \frac{dx{7 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 3}}\left( t \right) + \mathrm{x{7 6 1}}\left( t \right) + \mathrm{x{7 9 2}}\left( t \right) + \mathrm{x{7 9 4}}\left( t \right) + \mathrm{x{8 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 3}}\left( t \right) \ \frac{dx{7 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 4}}\left( t \right) + \mathrm{x{7 6 2}}\left( t \right) + \mathrm{x{7 9 3}}\left( t \right) + \mathrm{x{7 9 5}}\left( t \right) + \mathrm{x{8 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 4}}\left( t \right) \ \frac{dx{7 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 5}}\left( t \right) + \mathrm{x{7 6 3}}\left( t \right) + \mathrm{x{7 9 4}}\left( t \right) + \mathrm{x{7 9 6}}\left( t \right) + \mathrm{x{8 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 5}}\left( t \right) \ \frac{dx{7 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 6}}\left( t \right) + \mathrm{x{7 6 4}}\left( t \right) + \mathrm{x{7 9 5}}\left( t \right) + \mathrm{x{7 9 7}}\left( t \right) + \mathrm{x{8 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 6}}\left( t \right) \ \frac{dx{7 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 7}}\left( t \right) + \mathrm{x{7 6 5}}\left( t \right) + \mathrm{x{7 9 6}}\left( t \right) + \mathrm{x{7 9 8}}\left( t \right) + \mathrm{x{8 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 7}}\left( t \right) \ \frac{dx{7 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 8}}\left( t \right) + \mathrm{x{7 6 6}}\left( t \right) + \mathrm{x{7 9 7}}\left( t \right) + \mathrm{x{7 9 9}}\left( t \right) + \mathrm{x{8 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 8}}\left( t \right) \ \frac{dx{7 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{7 9 9}}\left( t \right) + \mathrm{x{7 6 7}}\left( t \right) + \mathrm{x{7 9 8}}\left( t \right) + \mathrm{x{8 0 0}}\left( t \right) + \mathrm{x{8 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{7 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{7 9 9}}\left( t \right) \ \frac{dx{8 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 0}}\left( t \right) + \mathrm{x{7 6 8}}\left( t \right) + \mathrm{x{7 6 9}}\left( t \right) + \mathrm{x{7 9 9}}\left( t \right) + \mathrm{x{8 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 0}}\left( t \right) \ \frac{dx{8 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 1}}\left( t \right) + \mathrm{x{7 6 9}}\left( t \right) + \mathrm{x{8 0 2}}\left( t \right) + \mathrm{x{8 3 2}}\left( t \right) + \mathrm{x{8 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 1}}\left( t \right) \ \frac{dx{8 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 2}}\left( t \right) + \mathrm{x{7 7 0}}\left( t \right) + \mathrm{x{8 0 1}}\left( t \right) + \mathrm{x{8 0 3}}\left( t \right) + \mathrm{x{8 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 2}}\left( t \right) \ \frac{dx{8 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 3}}\left( t \right) + \mathrm{x{7 7 1}}\left( t \right) + \mathrm{x{8 0 2}}\left( t \right) + \mathrm{x{8 0 4}}\left( t \right) + \mathrm{x{8 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 3}}\left( t \right) \ \frac{dx{8 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 4}}\left( t \right) + \mathrm{x{7 7 2}}\left( t \right) + \mathrm{x{8 0 3}}\left( t \right) + \mathrm{x{8 0 5}}\left( t \right) + \mathrm{x{8 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 4}}\left( t \right) \ \frac{dx{8 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 5}}\left( t \right) + \mathrm{x{7 7 3}}\left( t \right) + \mathrm{x{8 0 4}}\left( t \right) + \mathrm{x{8 0 6}}\left( t \right) + \mathrm{x{8 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 5}}\left( t \right) \ \frac{dx{8 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 6}}\left( t \right) + \mathrm{x{7 7 4}}\left( t \right) + \mathrm{x{8 0 5}}\left( t \right) + \mathrm{x{8 0 7}}\left( t \right) + \mathrm{x{8 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 6}}\left( t \right) \ \frac{dx{8 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 7}}\left( t \right) + \mathrm{x{7 7 5}}\left( t \right) + \mathrm{x{8 0 6}}\left( t \right) + \mathrm{x{8 0 8}}\left( t \right) + \mathrm{x{8 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 7}}\left( t \right) \ \frac{dx{8 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 8}}\left( t \right) + \mathrm{x{7 7 6}}\left( t \right) + \mathrm{x{8 0 7}}\left( t \right) + \mathrm{x{8 0 9}}\left( t \right) + \mathrm{x{8 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 8}}\left( t \right) \ \frac{dx{8 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 0 9}}\left( t \right) + \mathrm{x{7 7 7}}\left( t \right) + \mathrm{x{8 0 8}}\left( t \right) + \mathrm{x{8 1 0}}\left( t \right) + \mathrm{x{8 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 0 9}}\left( t \right) \ \frac{dx{8 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 0}}\left( t \right) + \mathrm{x{7 7 8}}\left( t \right) + \mathrm{x{8 0 9}}\left( t \right) + \mathrm{x{8 1 1}}\left( t \right) + \mathrm{x{8 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 0}}\left( t \right) \ \frac{dx{8 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 1}}\left( t \right) + \mathrm{x{7 7 9}}\left( t \right) + \mathrm{x{8 1 0}}\left( t \right) + \mathrm{x{8 1 2}}\left( t \right) + \mathrm{x{8 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 1}}\left( t \right) \ \frac{dx{8 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 2}}\left( t \right) + \mathrm{x{7 8 0}}\left( t \right) + \mathrm{x{8 1 1}}\left( t \right) + \mathrm{x{8 1 3}}\left( t \right) + \mathrm{x{8 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 2}}\left( t \right) \ \frac{dx{8 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 3}}\left( t \right) + \mathrm{x{7 8 1}}\left( t \right) + \mathrm{x{8 1 2}}\left( t \right) + \mathrm{x{8 1 4}}\left( t \right) + \mathrm{x{8 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 3}}\left( t \right) \ \frac{dx{8 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 4}}\left( t \right) + \mathrm{x{7 8 2}}\left( t \right) + \mathrm{x{8 1 3}}\left( t \right) + \mathrm{x{8 1 5}}\left( t \right) + \mathrm{x{8 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 4}}\left( t \right) \ \frac{dx{8 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 5}}\left( t \right) + \mathrm{x{7 8 3}}\left( t \right) + \mathrm{x{8 1 4}}\left( t \right) + \mathrm{x{8 1 6}}\left( t \right) + \mathrm{x{8 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 5}}\left( t \right) \ \frac{dx{8 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 6}}\left( t \right) + \mathrm{x{7 8 4}}\left( t \right) + \mathrm{x{8 1 5}}\left( t \right) + \mathrm{x{8 1 7}}\left( t \right) + \mathrm{x{8 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 6}}\left( t \right) \ \frac{dx{8 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 7}}\left( t \right) + \mathrm{x{7 8 5}}\left( t \right) + \mathrm{x{8 1 6}}\left( t \right) + \mathrm{x{8 1 8}}\left( t \right) + \mathrm{x{8 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 7}}\left( t \right) \ \frac{dx{8 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 8}}\left( t \right) + \mathrm{x{7 8 6}}\left( t \right) + \mathrm{x{8 1 7}}\left( t \right) + \mathrm{x{8 1 9}}\left( t \right) + \mathrm{x{8 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 8}}\left( t \right) \ \frac{dx{8 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 1 9}}\left( t \right) + \mathrm{x{7 8 7}}\left( t \right) + \mathrm{x{8 1 8}}\left( t \right) + \mathrm{x{8 2 0}}\left( t \right) + \mathrm{x{8 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 1 9}}\left( t \right) \ \frac{dx{8 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 0}}\left( t \right) + \mathrm{x{7 8 8}}\left( t \right) + \mathrm{x{8 1 9}}\left( t \right) + \mathrm{x{8 2 1}}\left( t \right) + \mathrm{x{8 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 0}}\left( t \right) \ \frac{dx{8 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 1}}\left( t \right) + \mathrm{x{7 8 9}}\left( t \right) + \mathrm{x{8 2 0}}\left( t \right) + \mathrm{x{8 2 2}}\left( t \right) + \mathrm{x{8 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 1}}\left( t \right) \ \frac{dx{8 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 2}}\left( t \right) + \mathrm{x{7 9 0}}\left( t \right) + \mathrm{x{8 2 1}}\left( t \right) + \mathrm{x{8 2 3}}\left( t \right) + \mathrm{x{8 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 2}}\left( t \right) \ \frac{dx{8 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 3}}\left( t \right) + \mathrm{x{7 9 1}}\left( t \right) + \mathrm{x{8 2 2}}\left( t \right) + \mathrm{x{8 2 4}}\left( t \right) + \mathrm{x{8 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 3}}\left( t \right) \ \frac{dx{8 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 4}}\left( t \right) + \mathrm{x{7 9 2}}\left( t \right) + \mathrm{x{8 2 3}}\left( t \right) + \mathrm{x{8 2 5}}\left( t \right) + \mathrm{x{8 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 4}}\left( t \right) \ \frac{dx{8 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 5}}\left( t \right) + \mathrm{x{7 9 3}}\left( t \right) + \mathrm{x{8 2 4}}\left( t \right) + \mathrm{x{8 2 6}}\left( t \right) + \mathrm{x{8 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 5}}\left( t \right) \ \frac{dx{8 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 6}}\left( t \right) + \mathrm{x{7 9 4}}\left( t \right) + \mathrm{x{8 2 5}}\left( t \right) + \mathrm{x{8 2 7}}\left( t \right) + \mathrm{x{8 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 6}}\left( t \right) \ \frac{dx{8 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 7}}\left( t \right) + \mathrm{x{7 9 5}}\left( t \right) + \mathrm{x{8 2 6}}\left( t \right) + \mathrm{x{8 2 8}}\left( t \right) + \mathrm{x{8 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 7}}\left( t \right) \ \frac{dx{8 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 8}}\left( t \right) + \mathrm{x{7 9 6}}\left( t \right) + \mathrm{x{8 2 7}}\left( t \right) + \mathrm{x{8 2 9}}\left( t \right) + \mathrm{x{8 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 8}}\left( t \right) \ \frac{dx{8 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 2 9}}\left( t \right) + \mathrm{x{7 9 7}}\left( t \right) + \mathrm{x{8 2 8}}\left( t \right) + \mathrm{x{8 3 0}}\left( t \right) + \mathrm{x{8 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 2 9}}\left( t \right) \ \frac{dx{8 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 0}}\left( t \right) + \mathrm{x{7 9 8}}\left( t \right) + \mathrm{x{8 2 9}}\left( t \right) + \mathrm{x{8 3 1}}\left( t \right) + \mathrm{x{8 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 0}}\left( t \right) \ \frac{dx{8 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 1}}\left( t \right) + \mathrm{x{7 9 9}}\left( t \right) + \mathrm{x{8 3 0}}\left( t \right) + \mathrm{x{8 3 2}}\left( t \right) + \mathrm{x{8 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 1}}\left( t \right) \ \frac{dx{8 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 2}}\left( t \right) + \mathrm{x{8 0 0}}\left( t \right) + \mathrm{x{8 0 1}}\left( t \right) + \mathrm{x{8 3 1}}\left( t \right) + \mathrm{x{8 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 2}}\left( t \right) \ \frac{dx{8 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 3}}\left( t \right) + \mathrm{x{8 0 1}}\left( t \right) + \mathrm{x{8 3 4}}\left( t \right) + \mathrm{x{8 6 4}}\left( t \right) + \mathrm{x{8 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 3}}\left( t \right) \ \frac{dx{8 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 4}}\left( t \right) + \mathrm{x{8 0 2}}\left( t \right) + \mathrm{x{8 3 3}}\left( t \right) + \mathrm{x{8 3 5}}\left( t \right) + \mathrm{x{8 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 4}}\left( t \right) \ \frac{dx{8 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 5}}\left( t \right) + \mathrm{x{8 0 3}}\left( t \right) + \mathrm{x{8 3 4}}\left( t \right) + \mathrm{x{8 3 6}}\left( t \right) + \mathrm{x{8 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 5}}\left( t \right) \ \frac{dx{8 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 6}}\left( t \right) + \mathrm{x{8 0 4}}\left( t \right) + \mathrm{x{8 3 5}}\left( t \right) + \mathrm{x{8 3 7}}\left( t \right) + \mathrm{x{8 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 6}}\left( t \right) \ \frac{dx{8 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 7}}\left( t \right) + \mathrm{x{8 0 5}}\left( t \right) + \mathrm{x{8 3 6}}\left( t \right) + \mathrm{x{8 3 8}}\left( t \right) + \mathrm{x{8 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 7}}\left( t \right) \ \frac{dx{8 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 8}}\left( t \right) + \mathrm{x{8 0 6}}\left( t \right) + \mathrm{x{8 3 7}}\left( t \right) + \mathrm{x{8 3 9}}\left( t \right) + \mathrm{x{8 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 8}}\left( t \right) \ \frac{dx{8 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 3 9}}\left( t \right) + \mathrm{x{8 0 7}}\left( t \right) + \mathrm{x{8 3 8}}\left( t \right) + \mathrm{x{8 4 0}}\left( t \right) + \mathrm{x{8 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 3 9}}\left( t \right) \ \frac{dx{8 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 0}}\left( t \right) + \mathrm{x{8 0 8}}\left( t \right) + \mathrm{x{8 3 9}}\left( t \right) + \mathrm{x{8 4 1}}\left( t \right) + \mathrm{x{8 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 0}}\left( t \right) \ \frac{dx{8 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 1}}\left( t \right) + \mathrm{x{8 0 9}}\left( t \right) + \mathrm{x{8 4 0}}\left( t \right) + \mathrm{x{8 4 2}}\left( t \right) + \mathrm{x{8 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 1}}\left( t \right) \ \frac{dx{8 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 2}}\left( t \right) + \mathrm{x{8 1 0}}\left( t \right) + \mathrm{x{8 4 1}}\left( t \right) + \mathrm{x{8 4 3}}\left( t \right) + \mathrm{x{8 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 2}}\left( t \right) \ \frac{dx{8 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 3}}\left( t \right) + \mathrm{x{8 1 1}}\left( t \right) + \mathrm{x{8 4 2}}\left( t \right) + \mathrm{x{8 4 4}}\left( t \right) + \mathrm{x{8 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 3}}\left( t \right) \ \frac{dx{8 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 4}}\left( t \right) + \mathrm{x{8 1 2}}\left( t \right) + \mathrm{x{8 4 3}}\left( t \right) + \mathrm{x{8 4 5}}\left( t \right) + \mathrm{x{8 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 4}}\left( t \right) \ \frac{dx{8 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 5}}\left( t \right) + \mathrm{x{8 1 3}}\left( t \right) + \mathrm{x{8 4 4}}\left( t \right) + \mathrm{x{8 4 6}}\left( t \right) + \mathrm{x{8 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 5}}\left( t \right) \ \frac{dx{8 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 6}}\left( t \right) + \mathrm{x{8 1 4}}\left( t \right) + \mathrm{x{8 4 5}}\left( t \right) + \mathrm{x{8 4 7}}\left( t \right) + \mathrm{x{8 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 6}}\left( t \right) \ \frac{dx{8 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 7}}\left( t \right) + \mathrm{x{8 1 5}}\left( t \right) + \mathrm{x{8 4 6}}\left( t \right) + \mathrm{x{8 4 8}}\left( t \right) + \mathrm{x{8 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 7}}\left( t \right) \ \frac{dx{8 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 8}}\left( t \right) + \mathrm{x{8 1 6}}\left( t \right) + \mathrm{x{8 4 7}}\left( t \right) + \mathrm{x{8 4 9}}\left( t \right) + \mathrm{x{8 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 8}}\left( t \right) \ \frac{dx{8 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 4 9}}\left( t \right) + \mathrm{x{8 1 7}}\left( t \right) + \mathrm{x{8 4 8}}\left( t \right) + \mathrm{x{8 5 0}}\left( t \right) + \mathrm{x{8 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 4 9}}\left( t \right) \ \frac{dx{8 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 0}}\left( t \right) + \mathrm{x{8 1 8}}\left( t \right) + \mathrm{x{8 4 9}}\left( t \right) + \mathrm{x{8 5 1}}\left( t \right) + \mathrm{x{8 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 0}}\left( t \right) \ \frac{dx{8 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 1}}\left( t \right) + \mathrm{x{8 1 9}}\left( t \right) + \mathrm{x{8 5 0}}\left( t \right) + \mathrm{x{8 5 2}}\left( t \right) + \mathrm{x{8 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 1}}\left( t \right) \ \frac{dx{8 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 2}}\left( t \right) + \mathrm{x{8 2 0}}\left( t \right) + \mathrm{x{8 5 1}}\left( t \right) + \mathrm{x{8 5 3}}\left( t \right) + \mathrm{x{8 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 2}}\left( t \right) \ \frac{dx{8 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 3}}\left( t \right) + \mathrm{x{8 2 1}}\left( t \right) + \mathrm{x{8 5 2}}\left( t \right) + \mathrm{x{8 5 4}}\left( t \right) + \mathrm{x{8 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 3}}\left( t \right) \ \frac{dx{8 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 4}}\left( t \right) + \mathrm{x{8 2 2}}\left( t \right) + \mathrm{x{8 5 3}}\left( t \right) + \mathrm{x{8 5 5}}\left( t \right) + \mathrm{x{8 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 4}}\left( t \right) \ \frac{dx{8 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 5}}\left( t \right) + \mathrm{x{8 2 3}}\left( t \right) + \mathrm{x{8 5 4}}\left( t \right) + \mathrm{x{8 5 6}}\left( t \right) + \mathrm{x{8 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 5}}\left( t \right) \ \frac{dx{8 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 6}}\left( t \right) + \mathrm{x{8 2 4}}\left( t \right) + \mathrm{x{8 5 5}}\left( t \right) + \mathrm{x{8 5 7}}\left( t \right) + \mathrm{x{8 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 6}}\left( t \right) \ \frac{dx{8 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 7}}\left( t \right) + \mathrm{x{8 2 5}}\left( t \right) + \mathrm{x{8 5 6}}\left( t \right) + \mathrm{x{8 5 8}}\left( t \right) + \mathrm{x{8 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 7}}\left( t \right) \ \frac{dx{8 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 8}}\left( t \right) + \mathrm{x{8 2 6}}\left( t \right) + \mathrm{x{8 5 7}}\left( t \right) + \mathrm{x{8 5 9}}\left( t \right) + \mathrm{x{8 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 8}}\left( t \right) \ \frac{dx{8 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 5 9}}\left( t \right) + \mathrm{x{8 2 7}}\left( t \right) + \mathrm{x{8 5 8}}\left( t \right) + \mathrm{x{8 6 0}}\left( t \right) + \mathrm{x{8 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 5 9}}\left( t \right) \ \frac{dx{8 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 0}}\left( t \right) + \mathrm{x{8 2 8}}\left( t \right) + \mathrm{x{8 5 9}}\left( t \right) + \mathrm{x{8 6 1}}\left( t \right) + \mathrm{x{8 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 0}}\left( t \right) \ \frac{dx{8 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 1}}\left( t \right) + \mathrm{x{8 2 9}}\left( t \right) + \mathrm{x{8 6 0}}\left( t \right) + \mathrm{x{8 6 2}}\left( t \right) + \mathrm{x{8 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 1}}\left( t \right) \ \frac{dx{8 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 2}}\left( t \right) + \mathrm{x{8 3 0}}\left( t \right) + \mathrm{x{8 6 1}}\left( t \right) + \mathrm{x{8 6 3}}\left( t \right) + \mathrm{x{8 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 2}}\left( t \right) \ \frac{dx{8 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 3}}\left( t \right) + \mathrm{x{8 3 1}}\left( t \right) + \mathrm{x{8 6 2}}\left( t \right) + \mathrm{x{8 6 4}}\left( t \right) + \mathrm{x{8 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 3}}\left( t \right) \ \frac{dx{8 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 4}}\left( t \right) + \mathrm{x{8 3 2}}\left( t \right) + \mathrm{x{8 3 3}}\left( t \right) + \mathrm{x{8 6 3}}\left( t \right) + \mathrm{x{8 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 4}}\left( t \right) \ \frac{dx{8 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 5}}\left( t \right) + \mathrm{x{8 3 3}}\left( t \right) + \mathrm{x{8 6 6}}\left( t \right) + \mathrm{x{8 9 6}}\left( t \right) + \mathrm{x{8 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 5}}\left( t \right) \ \frac{dx{8 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 6}}\left( t \right) + \mathrm{x{8 3 4}}\left( t \right) + \mathrm{x{8 6 5}}\left( t \right) + \mathrm{x{8 6 7}}\left( t \right) + \mathrm{x{8 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 6}}\left( t \right) \ \frac{dx{8 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 7}}\left( t \right) + \mathrm{x{8 3 5}}\left( t \right) + \mathrm{x{8 6 6}}\left( t \right) + \mathrm{x{8 6 8}}\left( t \right) + \mathrm{x{8 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 7}}\left( t \right) \ \frac{dx{8 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 8}}\left( t \right) + \mathrm{x{8 3 6}}\left( t \right) + \mathrm{x{8 6 7}}\left( t \right) + \mathrm{x{8 6 9}}\left( t \right) + \mathrm{x{9 0 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 8}}\left( t \right) \ \frac{dx{8 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 6 9}}\left( t \right) + \mathrm{x{8 3 7}}\left( t \right) + \mathrm{x{8 6 8}}\left( t \right) + \mathrm{x{8 7 0}}\left( t \right) + \mathrm{x{9 0 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 6 9}}\left( t \right) \ \frac{dx{8 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 0}}\left( t \right) + \mathrm{x{8 3 8}}\left( t \right) + \mathrm{x{8 6 9}}\left( t \right) + \mathrm{x{8 7 1}}\left( t \right) + \mathrm{x{9 0 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 0}}\left( t \right) \ \frac{dx{8 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 1}}\left( t \right) + \mathrm{x{8 3 9}}\left( t \right) + \mathrm{x{8 7 0}}\left( t \right) + \mathrm{x{8 7 2}}\left( t \right) + \mathrm{x{9 0 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 1}}\left( t \right) \ \frac{dx{8 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 2}}\left( t \right) + \mathrm{x{8 4 0}}\left( t \right) + \mathrm{x{8 7 1}}\left( t \right) + \mathrm{x{8 7 3}}\left( t \right) + \mathrm{x{9 0 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 2}}\left( t \right) \ \frac{dx{8 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 3}}\left( t \right) + \mathrm{x{8 4 1}}\left( t \right) + \mathrm{x{8 7 2}}\left( t \right) + \mathrm{x{8 7 4}}\left( t \right) + \mathrm{x{9 0 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 3}}\left( t \right) \ \frac{dx{8 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 4}}\left( t \right) + \mathrm{x{8 4 2}}\left( t \right) + \mathrm{x{8 7 3}}\left( t \right) + \mathrm{x{8 7 5}}\left( t \right) + \mathrm{x{9 0 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 4}}\left( t \right) \ \frac{dx{8 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 5}}\left( t \right) + \mathrm{x{8 4 3}}\left( t \right) + \mathrm{x{8 7 4}}\left( t \right) + \mathrm{x{8 7 6}}\left( t \right) + \mathrm{x{9 0 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 5}}\left( t \right) \ \frac{dx{8 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 6}}\left( t \right) + \mathrm{x{8 4 4}}\left( t \right) + \mathrm{x{8 7 5}}\left( t \right) + \mathrm{x{8 7 7}}\left( t \right) + \mathrm{x{9 0 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 6}}\left( t \right) \ \frac{dx{8 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 7}}\left( t \right) + \mathrm{x{8 4 5}}\left( t \right) + \mathrm{x{8 7 6}}\left( t \right) + \mathrm{x{8 7 8}}\left( t \right) + \mathrm{x{9 0 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 7}}\left( t \right) \ \frac{dx{8 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 8}}\left( t \right) + \mathrm{x{8 4 6}}\left( t \right) + \mathrm{x{8 7 7}}\left( t \right) + \mathrm{x{8 7 9}}\left( t \right) + \mathrm{x{9 1 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 8}}\left( t \right) \ \frac{dx{8 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 7 9}}\left( t \right) + \mathrm{x{8 4 7}}\left( t \right) + \mathrm{x{8 7 8}}\left( t \right) + \mathrm{x{8 8 0}}\left( t \right) + \mathrm{x{9 1 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 7 9}}\left( t \right) \ \frac{dx{8 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 0}}\left( t \right) + \mathrm{x{8 4 8}}\left( t \right) + \mathrm{x{8 7 9}}\left( t \right) + \mathrm{x{8 8 1}}\left( t \right) + \mathrm{x{9 1 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 0}}\left( t \right) \ \frac{dx{8 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 1}}\left( t \right) + \mathrm{x{8 4 9}}\left( t \right) + \mathrm{x{8 8 0}}\left( t \right) + \mathrm{x{8 8 2}}\left( t \right) + \mathrm{x{9 1 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 1}}\left( t \right) \ \frac{dx{8 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 2}}\left( t \right) + \mathrm{x{8 5 0}}\left( t \right) + \mathrm{x{8 8 1}}\left( t \right) + \mathrm{x{8 8 3}}\left( t \right) + \mathrm{x{9 1 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 2}}\left( t \right) \ \frac{dx{8 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 3}}\left( t \right) + \mathrm{x{8 5 1}}\left( t \right) + \mathrm{x{8 8 2}}\left( t \right) + \mathrm{x{8 8 4}}\left( t \right) + \mathrm{x{9 1 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 3}}\left( t \right) \ \frac{dx{8 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 4}}\left( t \right) + \mathrm{x{8 5 2}}\left( t \right) + \mathrm{x{8 8 3}}\left( t \right) + \mathrm{x{8 8 5}}\left( t \right) + \mathrm{x{9 1 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 4}}\left( t \right) \ \frac{dx{8 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 5}}\left( t \right) + \mathrm{x{8 5 3}}\left( t \right) + \mathrm{x{8 8 4}}\left( t \right) + \mathrm{x{8 8 6}}\left( t \right) + \mathrm{x{9 1 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 5}}\left( t \right) \ \frac{dx{8 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 6}}\left( t \right) + \mathrm{x{8 5 4}}\left( t \right) + \mathrm{x{8 8 5}}\left( t \right) + \mathrm{x{8 8 7}}\left( t \right) + \mathrm{x{9 1 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 6}}\left( t \right) \ \frac{dx{8 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 7}}\left( t \right) + \mathrm{x{8 5 5}}\left( t \right) + \mathrm{x{8 8 6}}\left( t \right) + \mathrm{x{8 8 8}}\left( t \right) + \mathrm{x{9 1 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 7}}\left( t \right) \ \frac{dx{8 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 8}}\left( t \right) + \mathrm{x{8 5 6}}\left( t \right) + \mathrm{x{8 8 7}}\left( t \right) + \mathrm{x{8 8 9}}\left( t \right) + \mathrm{x{9 2 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 8}}\left( t \right) \ \frac{dx{8 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 8 9}}\left( t \right) + \mathrm{x{8 5 7}}\left( t \right) + \mathrm{x{8 8 8}}\left( t \right) + \mathrm{x{8 9 0}}\left( t \right) + \mathrm{x{9 2 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 8 9}}\left( t \right) \ \frac{dx{8 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 0}}\left( t \right) + \mathrm{x{8 5 8}}\left( t \right) + \mathrm{x{8 8 9}}\left( t \right) + \mathrm{x{8 9 1}}\left( t \right) + \mathrm{x{9 2 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 0}}\left( t \right) \ \frac{dx{8 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 1}}\left( t \right) + \mathrm{x{8 5 9}}\left( t \right) + \mathrm{x{8 9 0}}\left( t \right) + \mathrm{x{8 9 2}}\left( t \right) + \mathrm{x{9 2 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 1}}\left( t \right) \ \frac{dx{8 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 2}}\left( t \right) + \mathrm{x{8 6 0}}\left( t \right) + \mathrm{x{8 9 1}}\left( t \right) + \mathrm{x{8 9 3}}\left( t \right) + \mathrm{x{9 2 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 2}}\left( t \right) \ \frac{dx{8 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 3}}\left( t \right) + \mathrm{x{8 6 1}}\left( t \right) + \mathrm{x{8 9 2}}\left( t \right) + \mathrm{x{8 9 4}}\left( t \right) + \mathrm{x{9 2 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 3}}\left( t \right) \ \frac{dx{8 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 4}}\left( t \right) + \mathrm{x{8 6 2}}\left( t \right) + \mathrm{x{8 9 3}}\left( t \right) + \mathrm{x{8 9 5}}\left( t \right) + \mathrm{x{9 2 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 4}}\left( t \right) \ \frac{dx{8 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 5}}\left( t \right) + \mathrm{x{8 6 3}}\left( t \right) + \mathrm{x{8 9 4}}\left( t \right) + \mathrm{x{8 9 6}}\left( t \right) + \mathrm{x{9 2 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 5}}\left( t \right) \ \frac{dx{8 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 6}}\left( t \right) + \mathrm{x{8 6 4}}\left( t \right) + \mathrm{x{8 6 5}}\left( t \right) + \mathrm{x{8 9 5}}\left( t \right) + \mathrm{x{9 2 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 6}}\left( t \right) \ \frac{dx{8 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 7}}\left( t \right) + \mathrm{x{8 6 5}}\left( t \right) + \mathrm{x{8 9 8}}\left( t \right) + \mathrm{x{9 2 8}}\left( t \right) + \mathrm{x{9 2 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 7}}\left( t \right) \ \frac{dx{8 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 8}}\left( t \right) + \mathrm{x{8 6 6}}\left( t \right) + \mathrm{x{8 9 7}}\left( t \right) + \mathrm{x{8 9 9}}\left( t \right) + \mathrm{x{9 3 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 8}}\left( t \right) \ \frac{dx{8 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{8 9 9}}\left( t \right) + \mathrm{x{8 6 7}}\left( t \right) + \mathrm{x{8 9 8}}\left( t \right) + \mathrm{x{9 0 0}}\left( t \right) + \mathrm{x{9 3 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{8 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{8 9 9}}\left( t \right) \ \frac{dx{9 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 0}}\left( t \right) + \mathrm{x{8 6 8}}\left( t \right) + \mathrm{x{8 9 9}}\left( t \right) + \mathrm{x{9 0 1}}\left( t \right) + \mathrm{x{9 3 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 0}}\left( t \right) \ \frac{dx{9 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 1}}\left( t \right) + \mathrm{x{8 6 9}}\left( t \right) + \mathrm{x{9 0 0}}\left( t \right) + \mathrm{x{9 0 2}}\left( t \right) + \mathrm{x{9 3 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 1}}\left( t \right) \ \frac{dx{9 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 2}}\left( t \right) + \mathrm{x{8 7 0}}\left( t \right) + \mathrm{x{9 0 1}}\left( t \right) + \mathrm{x{9 0 3}}\left( t \right) + \mathrm{x{9 3 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 2}}\left( t \right) \ \frac{dx{9 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 3}}\left( t \right) + \mathrm{x{8 7 1}}\left( t \right) + \mathrm{x{9 0 2}}\left( t \right) + \mathrm{x{9 0 4}}\left( t \right) + \mathrm{x{9 3 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 3}}\left( t \right) \ \frac{dx{9 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 4}}\left( t \right) + \mathrm{x{8 7 2}}\left( t \right) + \mathrm{x{9 0 3}}\left( t \right) + \mathrm{x{9 0 5}}\left( t \right) + \mathrm{x{9 3 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 4}}\left( t \right) \ \frac{dx{9 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 5}}\left( t \right) + \mathrm{x{8 7 3}}\left( t \right) + \mathrm{x{9 0 4}}\left( t \right) + \mathrm{x{9 0 6}}\left( t \right) + \mathrm{x{9 3 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 5}}\left( t \right) \ \frac{dx{9 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 6}}\left( t \right) + \mathrm{x{8 7 4}}\left( t \right) + \mathrm{x{9 0 5}}\left( t \right) + \mathrm{x{9 0 7}}\left( t \right) + \mathrm{x{9 3 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 6}}\left( t \right) \ \frac{dx{9 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 7}}\left( t \right) + \mathrm{x{8 7 5}}\left( t \right) + \mathrm{x{9 0 6}}\left( t \right) + \mathrm{x{9 0 8}}\left( t \right) + \mathrm{x{9 3 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 7}}\left( t \right) \ \frac{dx{9 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 8}}\left( t \right) + \mathrm{x{8 7 6}}\left( t \right) + \mathrm{x{9 0 7}}\left( t \right) + \mathrm{x{9 0 9}}\left( t \right) + \mathrm{x{9 4 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 8}}\left( t \right) \ \frac{dx{9 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 0 9}}\left( t \right) + \mathrm{x{8 7 7}}\left( t \right) + \mathrm{x{9 0 8}}\left( t \right) + \mathrm{x{9 1 0}}\left( t \right) + \mathrm{x{9 4 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 0 9}}\left( t \right) \ \frac{dx{9 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 0}}\left( t \right) + \mathrm{x{8 7 8}}\left( t \right) + \mathrm{x{9 0 9}}\left( t \right) + \mathrm{x{9 1 1}}\left( t \right) + \mathrm{x{9 4 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 0}}\left( t \right) \ \frac{dx{9 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 1}}\left( t \right) + \mathrm{x{8 7 9}}\left( t \right) + \mathrm{x{9 1 0}}\left( t \right) + \mathrm{x{9 1 2}}\left( t \right) + \mathrm{x{9 4 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 1}}\left( t \right) \ \frac{dx{9 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 2}}\left( t \right) + \mathrm{x{8 8 0}}\left( t \right) + \mathrm{x{9 1 1}}\left( t \right) + \mathrm{x{9 1 3}}\left( t \right) + \mathrm{x{9 4 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 2}}\left( t \right) \ \frac{dx{9 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 3}}\left( t \right) + \mathrm{x{8 8 1}}\left( t \right) + \mathrm{x{9 1 2}}\left( t \right) + \mathrm{x{9 1 4}}\left( t \right) + \mathrm{x{9 4 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 3}}\left( t \right) \ \frac{dx{9 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 4}}\left( t \right) + \mathrm{x{8 8 2}}\left( t \right) + \mathrm{x{9 1 3}}\left( t \right) + \mathrm{x{9 1 5}}\left( t \right) + \mathrm{x{9 4 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 4}}\left( t \right) \ \frac{dx{9 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 5}}\left( t \right) + \mathrm{x{8 8 3}}\left( t \right) + \mathrm{x{9 1 4}}\left( t \right) + \mathrm{x{9 1 6}}\left( t \right) + \mathrm{x{9 4 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 5}}\left( t \right) \ \frac{dx{9 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 6}}\left( t \right) + \mathrm{x{8 8 4}}\left( t \right) + \mathrm{x{9 1 5}}\left( t \right) + \mathrm{x{9 1 7}}\left( t \right) + \mathrm{x{9 4 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 6}}\left( t \right) \ \frac{dx{9 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 7}}\left( t \right) + \mathrm{x{8 8 5}}\left( t \right) + \mathrm{x{9 1 6}}\left( t \right) + \mathrm{x{9 1 8}}\left( t \right) + \mathrm{x{9 4 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 7}}\left( t \right) \ \frac{dx{9 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 8}}\left( t \right) + \mathrm{x{8 8 6}}\left( t \right) + \mathrm{x{9 1 7}}\left( t \right) + \mathrm{x{9 1 9}}\left( t \right) + \mathrm{x{9 5 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 8}}\left( t \right) \ \frac{dx{9 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 1 9}}\left( t \right) + \mathrm{x{8 8 7}}\left( t \right) + \mathrm{x{9 1 8}}\left( t \right) + \mathrm{x{9 2 0}}\left( t \right) + \mathrm{x{9 5 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 1 9}}\left( t \right) \ \frac{dx{9 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 0}}\left( t \right) + \mathrm{x{8 8 8}}\left( t \right) + \mathrm{x{9 1 9}}\left( t \right) + \mathrm{x{9 2 1}}\left( t \right) + \mathrm{x{9 5 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 0}}\left( t \right) \ \frac{dx{9 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 1}}\left( t \right) + \mathrm{x{8 8 9}}\left( t \right) + \mathrm{x{9 2 0}}\left( t \right) + \mathrm{x{9 2 2}}\left( t \right) + \mathrm{x{9 5 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 1}}\left( t \right) \ \frac{dx{9 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 2}}\left( t \right) + \mathrm{x{8 9 0}}\left( t \right) + \mathrm{x{9 2 1}}\left( t \right) + \mathrm{x{9 2 3}}\left( t \right) + \mathrm{x{9 5 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 2}}\left( t \right) \ \frac{dx{9 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 3}}\left( t \right) + \mathrm{x{8 9 1}}\left( t \right) + \mathrm{x{9 2 2}}\left( t \right) + \mathrm{x{9 2 4}}\left( t \right) + \mathrm{x{9 5 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 3}}\left( t \right) \ \frac{dx{9 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 4}}\left( t \right) + \mathrm{x{8 9 2}}\left( t \right) + \mathrm{x{9 2 3}}\left( t \right) + \mathrm{x{9 2 5}}\left( t \right) + \mathrm{x{9 5 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 4}}\left( t \right) \ \frac{dx{9 2 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 5}}\left( t \right) + \mathrm{x{8 9 3}}\left( t \right) + \mathrm{x{9 2 4}}\left( t \right) + \mathrm{x{9 2 6}}\left( t \right) + \mathrm{x{9 5 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 5}}\left( t \right) \ \frac{dx{9 2 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 6}}\left( t \right) + \mathrm{x{8 9 4}}\left( t \right) + \mathrm{x{9 2 5}}\left( t \right) + \mathrm{x{9 2 7}}\left( t \right) + \mathrm{x{9 5 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 6}}\left( t \right) \ \frac{dx{9 2 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 7}}\left( t \right) + \mathrm{x{8 9 5}}\left( t \right) + \mathrm{x{9 2 6}}\left( t \right) + \mathrm{x{9 2 8}}\left( t \right) + \mathrm{x{9 5 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 7}}\left( t \right) \ \frac{dx{9 2 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 8}}\left( t \right) + \mathrm{x{8 9 6}}\left( t \right) + \mathrm{x{8 9 7}}\left( t \right) + \mathrm{x{9 2 7}}\left( t \right) + \mathrm{x{9 6 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 8}}\left( t \right) \ \frac{dx{9 2 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 2 9}}\left( t \right) + \mathrm{x{8 9 7}}\left( t \right) + \mathrm{x{9 3 0}}\left( t \right) + \mathrm{x{9 6 0}}\left( t \right) + \mathrm{x{9 6 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 2 9}}\left( t \right) \ \frac{dx{9 3 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 0}}\left( t \right) + \mathrm{x{8 9 8}}\left( t \right) + \mathrm{x{9 2 9}}\left( t \right) + \mathrm{x{9 3 1}}\left( t \right) + \mathrm{x{9 6 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 0}}\left( t \right) \ \frac{dx{9 3 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 1}}\left( t \right) + \mathrm{x{8 9 9}}\left( t \right) + \mathrm{x{9 3 0}}\left( t \right) + \mathrm{x{9 3 2}}\left( t \right) + \mathrm{x{9 6 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 1}}\left( t \right) \ \frac{dx{9 3 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 2}}\left( t \right) + \mathrm{x{9 0 0}}\left( t \right) + \mathrm{x{9 3 1}}\left( t \right) + \mathrm{x{9 3 3}}\left( t \right) + \mathrm{x{9 6 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 2}}\left( t \right) \ \frac{dx{9 3 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 3}}\left( t \right) + \mathrm{x{9 0 1}}\left( t \right) + \mathrm{x{9 3 2}}\left( t \right) + \mathrm{x{9 3 4}}\left( t \right) + \mathrm{x{9 6 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 3}}\left( t \right) \ \frac{dx{9 3 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 4}}\left( t \right) + \mathrm{x{9 0 2}}\left( t \right) + \mathrm{x{9 3 3}}\left( t \right) + \mathrm{x{9 3 5}}\left( t \right) + \mathrm{x{9 6 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 4}}\left( t \right) \ \frac{dx{9 3 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 5}}\left( t \right) + \mathrm{x{9 0 3}}\left( t \right) + \mathrm{x{9 3 4}}\left( t \right) + \mathrm{x{9 3 6}}\left( t \right) + \mathrm{x{9 6 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 5}}\left( t \right) \ \frac{dx{9 3 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 6}}\left( t \right) + \mathrm{x{9 0 4}}\left( t \right) + \mathrm{x{9 3 5}}\left( t \right) + \mathrm{x{9 3 7}}\left( t \right) + \mathrm{x{9 6 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 6}}\left( t \right) \ \frac{dx{9 3 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 7}}\left( t \right) + \mathrm{x{9 0 5}}\left( t \right) + \mathrm{x{9 3 6}}\left( t \right) + \mathrm{x{9 3 8}}\left( t \right) + \mathrm{x{9 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 7}}\left( t \right) \ \frac{dx{9 3 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 8}}\left( t \right) + \mathrm{x{9 0 6}}\left( t \right) + \mathrm{x{9 3 7}}\left( t \right) + \mathrm{x{9 3 9}}\left( t \right) + \mathrm{x{9 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 8}}\left( t \right) \ \frac{dx{9 3 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 3 9}}\left( t \right) + \mathrm{x{9 0 7}}\left( t \right) + \mathrm{x{9 3 8}}\left( t \right) + \mathrm{x{9 4 0}}\left( t \right) + \mathrm{x{9 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 3 9}}\left( t \right) \ \frac{dx{9 4 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 0}}\left( t \right) + \mathrm{x{9 0 8}}\left( t \right) + \mathrm{x{9 3 9}}\left( t \right) + \mathrm{x{9 4 1}}\left( t \right) + \mathrm{x{9 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 0}}\left( t \right) \ \frac{dx{9 4 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 1}}\left( t \right) + \mathrm{x{9 0 9}}\left( t \right) + \mathrm{x{9 4 0}}\left( t \right) + \mathrm{x{9 4 2}}\left( t \right) + \mathrm{x{9 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 1}}\left( t \right) \ \frac{dx{9 4 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 2}}\left( t \right) + \mathrm{x{9 1 0}}\left( t \right) + \mathrm{x{9 4 1}}\left( t \right) + \mathrm{x{9 4 3}}\left( t \right) + \mathrm{x{9 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 2}}\left( t \right) \ \frac{dx{9 4 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 3}}\left( t \right) + \mathrm{x{9 1 1}}\left( t \right) + \mathrm{x{9 4 2}}\left( t \right) + \mathrm{x{9 4 4}}\left( t \right) + \mathrm{x{9 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 3}}\left( t \right) \ \frac{dx{9 4 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 4}}\left( t \right) + \mathrm{x{9 1 2}}\left( t \right) + \mathrm{x{9 4 3}}\left( t \right) + \mathrm{x{9 4 5}}\left( t \right) + \mathrm{x{9 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 4}}\left( t \right) \ \frac{dx{9 4 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 5}}\left( t \right) + \mathrm{x{9 1 3}}\left( t \right) + \mathrm{x{9 4 4}}\left( t \right) + \mathrm{x{9 4 6}}\left( t \right) + \mathrm{x{9 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 5}}\left( t \right) \ \frac{dx{9 4 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 6}}\left( t \right) + \mathrm{x{9 1 4}}\left( t \right) + \mathrm{x{9 4 5}}\left( t \right) + \mathrm{x{9 4 7}}\left( t \right) + \mathrm{x{9 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 6}}\left( t \right) \ \frac{dx{9 4 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 7}}\left( t \right) + \mathrm{x{9 1 5}}\left( t \right) + \mathrm{x{9 4 6}}\left( t \right) + \mathrm{x{9 4 8}}\left( t \right) + \mathrm{x{9 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 7}}\left( t \right) \ \frac{dx{9 4 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 8}}\left( t \right) + \mathrm{x{9 1 6}}\left( t \right) + \mathrm{x{9 4 7}}\left( t \right) + \mathrm{x{9 4 9}}\left( t \right) + \mathrm{x{9 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 8}}\left( t \right) \ \frac{dx{9 4 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 4 9}}\left( t \right) + \mathrm{x{9 1 7}}\left( t \right) + \mathrm{x{9 4 8}}\left( t \right) + \mathrm{x{9 5 0}}\left( t \right) + \mathrm{x{9 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 4 9}}\left( t \right) \ \frac{dx{9 5 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 0}}\left( t \right) + \mathrm{x{9 1 8}}\left( t \right) + \mathrm{x{9 4 9}}\left( t \right) + \mathrm{x{9 5 1}}\left( t \right) + \mathrm{x{9 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 0}}\left( t \right) \ \frac{dx{9 5 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 1}}\left( t \right) + \mathrm{x{9 1 9}}\left( t \right) + \mathrm{x{9 5 0}}\left( t \right) + \mathrm{x{9 5 2}}\left( t \right) + \mathrm{x{9 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 1}}\left( t \right) \ \frac{dx{9 5 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 2}}\left( t \right) + \mathrm{x{9 2 0}}\left( t \right) + \mathrm{x{9 5 1}}\left( t \right) + \mathrm{x{9 5 3}}\left( t \right) + \mathrm{x{9 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 2}}\left( t \right) \ \frac{dx{9 5 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 3}}\left( t \right) + \mathrm{x{9 2 1}}\left( t \right) + \mathrm{x{9 5 2}}\left( t \right) + \mathrm{x{9 5 4}}\left( t \right) + \mathrm{x{9 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 3}}\left( t \right) \ \frac{dx{9 5 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 4}}\left( t \right) + \mathrm{x{9 2 2}}\left( t \right) + \mathrm{x{9 5 3}}\left( t \right) + \mathrm{x{9 5 5}}\left( t \right) + \mathrm{x{9 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 4}}\left( t \right) \ \frac{dx{9 5 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 5}}\left( t \right) + \mathrm{x{9 2 3}}\left( t \right) + \mathrm{x{9 5 4}}\left( t \right) + \mathrm{x{9 5 6}}\left( t \right) + \mathrm{x{9 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 5}}\left( t \right) \ \frac{dx{9 5 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 6}}\left( t \right) + \mathrm{x{9 2 4}}\left( t \right) + \mathrm{x{9 5 5}}\left( t \right) + \mathrm{x{9 5 7}}\left( t \right) + \mathrm{x{9 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 6}}\left( t \right) \ \frac{dx{9 5 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 7}}\left( t \right) + \mathrm{x{9 2 5}}\left( t \right) + \mathrm{x{9 5 6}}\left( t \right) + \mathrm{x{9 5 8}}\left( t \right) + \mathrm{x{9 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 7}}\left( t \right) \ \frac{dx{9 5 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 8}}\left( t \right) + \mathrm{x{9 2 6}}\left( t \right) + \mathrm{x{9 5 7}}\left( t \right) + \mathrm{x{9 5 9}}\left( t \right) + \mathrm{x{9 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 8}}\left( t \right) \ \frac{dx{9 5 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 5 9}}\left( t \right) + \mathrm{x{9 2 7}}\left( t \right) + \mathrm{x{9 5 8}}\left( t \right) + \mathrm{x{9 6 0}}\left( t \right) + \mathrm{x{9 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 5 9}}\left( t \right) \ \frac{dx{9 6 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 0}}\left( t \right) + \mathrm{x{9 2 8}}\left( t \right) + \mathrm{x{9 2 9}}\left( t \right) + \mathrm{x{9 5 9}}\left( t \right) + \mathrm{x{9 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 0}}\left( t \right) \ \frac{dx{9 6 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 1}}\left( t \right) + \mathrm{x{9 2 9}}\left( t \right) + \mathrm{x{9 6 2}}\left( t \right) + \mathrm{x{9 9 2}}\left( t \right) + \mathrm{x{9 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 1}}\left( t \right) \ \frac{dx{9 6 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 2}}\left( t \right) + \mathrm{x{9 3 0}}\left( t \right) + \mathrm{x{9 6 1}}\left( t \right) + \mathrm{x{9 6 3}}\left( t \right) + \mathrm{x{9 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 2}}\left( t \right) \ \frac{dx{9 6 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 3}}\left( t \right) + \mathrm{x{9 3 1}}\left( t \right) + \mathrm{x{9 6 2}}\left( t \right) + \mathrm{x{9 6 4}}\left( t \right) + \mathrm{x{9 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 3}}\left( t \right) \ \frac{dx{9 6 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 4}}\left( t \right) + \mathrm{x{9 3 2}}\left( t \right) + \mathrm{x{9 6 3}}\left( t \right) + \mathrm{x{9 6 5}}\left( t \right) + \mathrm{x{9 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 4}}\left( t \right) \ \frac{dx{9 6 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 5}}\left( t \right) + \mathrm{x{9 3 3}}\left( t \right) + \mathrm{x{9 6 4}}\left( t \right) + \mathrm{x{9 6 6}}\left( t \right) + \mathrm{x{9 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 5}}\left( t \right) \ \frac{dx{9 6 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 6}}\left( t \right) + \mathrm{x{9 3 4}}\left( t \right) + \mathrm{x{9 6 5}}\left( t \right) + \mathrm{x{9 6 7}}\left( t \right) + \mathrm{x{9 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 6}}\left( t \right) \ \frac{dx{9 6 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 7}}\left( t \right) + \mathrm{x{9 3 5}}\left( t \right) + \mathrm{x{9 6 6}}\left( t \right) + \mathrm{x{9 6 8}}\left( t \right) + \mathrm{x{9 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 7}}\left( t \right) \ \frac{dx{9 6 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 8}}\left( t \right) + \mathrm{x{1 0 0 0}}\left( t \right) + \mathrm{x{9 3 6}}\left( t \right) + \mathrm{x{9 6 7}}\left( t \right) + \mathrm{x{9 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 8}}\left( t \right) \ \frac{dx{9 6 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 6 9}}\left( t \right) + \mathrm{x{1 0 0 1}}\left( t \right) + \mathrm{x{9 3 7}}\left( t \right) + \mathrm{x{9 6 8}}\left( t \right) + \mathrm{x{9 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 6 9}}\left( t \right) \ \frac{dx{9 7 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 0}}\left( t \right) + \mathrm{x{1 0 0 2}}\left( t \right) + \mathrm{x{9 3 8}}\left( t \right) + \mathrm{x{9 6 9}}\left( t \right) + \mathrm{x{9 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 0}}\left( t \right) \ \frac{dx{9 7 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 1}}\left( t \right) + \mathrm{x{1 0 0 3}}\left( t \right) + \mathrm{x{9 3 9}}\left( t \right) + \mathrm{x{9 7 0}}\left( t \right) + \mathrm{x{9 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 1}}\left( t \right) \ \frac{dx{9 7 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 2}}\left( t \right) + \mathrm{x{1 0 0 4}}\left( t \right) + \mathrm{x{9 4 0}}\left( t \right) + \mathrm{x{9 7 1}}\left( t \right) + \mathrm{x{9 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 2}}\left( t \right) \ \frac{dx{9 7 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 3}}\left( t \right) + \mathrm{x{1 0 0 5}}\left( t \right) + \mathrm{x{9 4 1}}\left( t \right) + \mathrm{x{9 7 2}}\left( t \right) + \mathrm{x{9 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 3}}\left( t \right) \ \frac{dx{9 7 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 4}}\left( t \right) + \mathrm{x{1 0 0 6}}\left( t \right) + \mathrm{x{9 4 2}}\left( t \right) + \mathrm{x{9 7 3}}\left( t \right) + \mathrm{x{9 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 4}}\left( t \right) \ \frac{dx{9 7 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 5}}\left( t \right) + \mathrm{x{1 0 0 7}}\left( t \right) + \mathrm{x{9 4 3}}\left( t \right) + \mathrm{x{9 7 4}}\left( t \right) + \mathrm{x{9 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 5}}\left( t \right) \ \frac{dx{9 7 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 6}}\left( t \right) + \mathrm{x{1 0 0 8}}\left( t \right) + \mathrm{x{9 4 4}}\left( t \right) + \mathrm{x{9 7 5}}\left( t \right) + \mathrm{x{9 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 6}}\left( t \right) \ \frac{dx{9 7 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 7}}\left( t \right) + \mathrm{x{1 0 0 9}}\left( t \right) + \mathrm{x{9 4 5}}\left( t \right) + \mathrm{x{9 7 6}}\left( t \right) + \mathrm{x{9 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 7}}\left( t \right) \ \frac{dx{9 7 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 8}}\left( t \right) + \mathrm{x{1 0 1 0}}\left( t \right) + \mathrm{x{9 4 6}}\left( t \right) + \mathrm{x{9 7 7}}\left( t \right) + \mathrm{x{9 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 8}}\left( t \right) \ \frac{dx{9 7 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 7 9}}\left( t \right) + \mathrm{x{1 0 1 1}}\left( t \right) + \mathrm{x{9 4 7}}\left( t \right) + \mathrm{x{9 7 8}}\left( t \right) + \mathrm{x{9 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 7 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 7 9}}\left( t \right) \ \frac{dx{9 8 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 0}}\left( t \right) + \mathrm{x{1 0 1 2}}\left( t \right) + \mathrm{x{9 4 8}}\left( t \right) + \mathrm{x{9 7 9}}\left( t \right) + \mathrm{x{9 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 0}}\left( t \right) \ \frac{dx{9 8 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 1}}\left( t \right) + \mathrm{x{1 0 1 3}}\left( t \right) + \mathrm{x{9 4 9}}\left( t \right) + \mathrm{x{9 8 0}}\left( t \right) + \mathrm{x{9 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 1}}\left( t \right) \ \frac{dx{9 8 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 2}}\left( t \right) + \mathrm{x{1 0 1 4}}\left( t \right) + \mathrm{x{9 5 0}}\left( t \right) + \mathrm{x{9 8 1}}\left( t \right) + \mathrm{x{9 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 2}}\left( t \right) \ \frac{dx{9 8 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 3}}\left( t \right) + \mathrm{x{1 0 1 5}}\left( t \right) + \mathrm{x{9 5 1}}\left( t \right) + \mathrm{x{9 8 2}}\left( t \right) + \mathrm{x{9 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 3}}\left( t \right) \ \frac{dx{9 8 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 4}}\left( t \right) + \mathrm{x{1 0 1 6}}\left( t \right) + \mathrm{x{9 5 2}}\left( t \right) + \mathrm{x{9 8 3}}\left( t \right) + \mathrm{x{9 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 4}}\left( t \right) \ \frac{dx{9 8 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 5}}\left( t \right) + \mathrm{x{1 0 1 7}}\left( t \right) + \mathrm{x{9 5 3}}\left( t \right) + \mathrm{x{9 8 4}}\left( t \right) + \mathrm{x{9 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 5}}\left( t \right) \ \frac{dx{9 8 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 6}}\left( t \right) + \mathrm{x{1 0 1 8}}\left( t \right) + \mathrm{x{9 5 4}}\left( t \right) + \mathrm{x{9 8 5}}\left( t \right) + \mathrm{x{9 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 6}}\left( t \right) \ \frac{dx{9 8 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 7}}\left( t \right) + \mathrm{x{1 0 1 9}}\left( t \right) + \mathrm{x{9 5 5}}\left( t \right) + \mathrm{x{9 8 6}}\left( t \right) + \mathrm{x{9 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 7}}\left( t \right) \ \frac{dx{9 8 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 8}}\left( t \right) + \mathrm{x{1 0 2 0}}\left( t \right) + \mathrm{x{9 5 6}}\left( t \right) + \mathrm{x{9 8 7}}\left( t \right) + \mathrm{x{9 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 8}}\left( t \right) \ \frac{dx{9 8 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 8 9}}\left( t \right) + \mathrm{x{1 0 2 1}}\left( t \right) + \mathrm{x{9 5 7}}\left( t \right) + \mathrm{x{9 8 8}}\left( t \right) + \mathrm{x{9 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 8 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 8 9}}\left( t \right) \ \frac{dx{9 9 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 0}}\left( t \right) + \mathrm{x{1 0 2 2}}\left( t \right) + \mathrm{x{9 5 8}}\left( t \right) + \mathrm{x{9 8 9}}\left( t \right) + \mathrm{x{9 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 0}}\left( t \right) \ \frac{dx{9 9 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 1}}\left( t \right) + \mathrm{x{1 0 2 3}}\left( t \right) + \mathrm{x{9 5 9}}\left( t \right) + \mathrm{x{9 9 0}}\left( t \right) + \mathrm{x{9 9 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 1}}\left( t \right) \ \frac{dx{9 9 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 2}}\left( t \right) + \mathrm{x{1 0 2 4}}\left( t \right) + \mathrm{x{9 6 0}}\left( t \right) + \mathrm{x{9 6 1}}\left( t \right) + \mathrm{x{9 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 2}}\left( t \right) \ \frac{dx{9 9 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 3}}\left( t \right) + \mathrm{x1}\left( t \right) + \mathrm{x{1 0 2 4}}\left( t \right) + \mathrm{x{9 6 1}}\left( t \right) + \mathrm{x{9 9 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 3}}\left( t \right) \ \frac{dx{9 9 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 4}}\left( t \right) + \mathrm{x2}\left( t \right) + \mathrm{x{9 6 2}}\left( t \right) + \mathrm{x{9 9 3}}\left( t \right) + \mathrm{x{9 9 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 4}}\left( t \right) \ \frac{dx{9 9 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 5}}\left( t \right) + \mathrm{x3}\left( t \right) + \mathrm{x{9 6 3}}\left( t \right) + \mathrm{x{9 9 4}}\left( t \right) + \mathrm{x{9 9 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 5}}\left( t \right) \ \frac{dx{9 9 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 6}}\left( t \right) + \mathrm{x4}\left( t \right) + \mathrm{x{9 6 4}}\left( t \right) + \mathrm{x{9 9 5}}\left( t \right) + \mathrm{x{9 9 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 6}}\left( t \right) \ \frac{dx{9 9 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 7}}\left( t \right) + \mathrm{x5}\left( t \right) + \mathrm{x{9 6 5}}\left( t \right) + \mathrm{x{9 9 6}}\left( t \right) + \mathrm{x{9 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 7}}\left( t \right) \ \frac{dx{9 9 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 8}}\left( t \right) + \mathrm{x6}\left( t \right) + \mathrm{x{9 6 6}}\left( t \right) + \mathrm{x{9 9 7}}\left( t \right) + \mathrm{x{9 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 8}}\left( t \right) \ \frac{dx{9 9 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{9 9 9}}\left( t \right) + \mathrm{x{1 0 0 0}}\left( t \right) + \mathrm{x7}\left( t \right) + \mathrm{x{9 6 7}}\left( t \right) + \mathrm{x{9 9 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{9 9 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{9 9 9}}\left( t \right) \ \frac{dx{1 0 0 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 0}}\left( t \right) + \mathrm{x{1 0 0 1}}\left( t \right) + \mathrm{x8}\left( t \right) + \mathrm{x{9 6 8}}\left( t \right) + \mathrm{x{9 9 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 0}}\left( t \right) \ \frac{dx{1 0 0 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 1}}\left( t \right) + \mathrm{x{1 0 0 0}}\left( t \right) + \mathrm{x{1 0 0 2}}\left( t \right) + \mathrm{x9}\left( t \right) + \mathrm{x{9 6 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 1}}\left( t \right) \ \frac{dx{1 0 0 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 2}}\left( t \right) + \mathrm{x{1 0}}\left( t \right) + \mathrm{x{1 0 0 1}}\left( t \right) + \mathrm{x{1 0 0 3}}\left( t \right) + \mathrm{x{9 7 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 2}}\left( t \right) \ \frac{dx{1 0 0 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 3}}\left( t \right) + \mathrm{x{1 0 0 2}}\left( t \right) + \mathrm{x{1 0 0 4}}\left( t \right) + \mathrm{x{1 1}}\left( t \right) + \mathrm{x{9 7 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 3}}\left( t \right) \ \frac{dx{1 0 0 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 4}}\left( t \right) + \mathrm{x{1 0 0 3}}\left( t \right) + \mathrm{x{1 0 0 5}}\left( t \right) + \mathrm{x{1 2}}\left( t \right) + \mathrm{x{9 7 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 4}}\left( t \right) \ \frac{dx{1 0 0 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 5}}\left( t \right) + \mathrm{x{1 0 0 4}}\left( t \right) + \mathrm{x{1 0 0 6}}\left( t \right) + \mathrm{x{1 3}}\left( t \right) + \mathrm{x{9 7 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 5}}\left( t \right) \ \frac{dx{1 0 0 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 6}}\left( t \right) + \mathrm{x{1 0 0 5}}\left( t \right) + \mathrm{x{1 0 0 7}}\left( t \right) + \mathrm{x{1 4}}\left( t \right) + \mathrm{x{9 7 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 6}}\left( t \right) \ \frac{dx{1 0 0 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 7}}\left( t \right) + \mathrm{x{1 0 0 6}}\left( t \right) + \mathrm{x{1 0 0 8}}\left( t \right) + \mathrm{x{1 5}}\left( t \right) + \mathrm{x{9 7 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 7}}\left( t \right) \ \frac{dx{1 0 0 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 8}}\left( t \right) + \mathrm{x{1 0 0 7}}\left( t \right) + \mathrm{x{1 0 0 9}}\left( t \right) + \mathrm{x{1 6}}\left( t \right) + \mathrm{x{9 7 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 8}}\left( t \right) \ \frac{dx{1 0 0 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 0 9}}\left( t \right) + \mathrm{x{1 0 0 8}}\left( t \right) + \mathrm{x{1 0 1 0}}\left( t \right) + \mathrm{x{1 7}}\left( t \right) + \mathrm{x{9 7 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 0 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 0 9}}\left( t \right) \ \frac{dx{1 0 1 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 0}}\left( t \right) + \mathrm{x{1 0 0 9}}\left( t \right) + \mathrm{x{1 0 1 1}}\left( t \right) + \mathrm{x{1 8}}\left( t \right) + \mathrm{x{9 7 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 0}}\left( t \right) \ \frac{dx{1 0 1 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 1}}\left( t \right) + \mathrm{x{1 0 1 0}}\left( t \right) + \mathrm{x{1 0 1 2}}\left( t \right) + \mathrm{x{1 9}}\left( t \right) + \mathrm{x{9 7 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 1}}\left( t \right) \ \frac{dx{1 0 1 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 2}}\left( t \right) + \mathrm{x{1 0 1 1}}\left( t \right) + \mathrm{x{1 0 1 3}}\left( t \right) + \mathrm{x{2 0}}\left( t \right) + \mathrm{x{9 8 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 2}}\left( t \right) \ \frac{dx{1 0 1 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 3}}\left( t \right) + \mathrm{x{1 0 1 2}}\left( t \right) + \mathrm{x{1 0 1 4}}\left( t \right) + \mathrm{x{2 1}}\left( t \right) + \mathrm{x{9 8 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 3}}\left( t \right) \ \frac{dx{1 0 1 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 4}}\left( t \right) + \mathrm{x{1 0 1 3}}\left( t \right) + \mathrm{x{1 0 1 5}}\left( t \right) + \mathrm{x{2 2}}\left( t \right) + \mathrm{x{9 8 2}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 4}}\left( t \right) \ \frac{dx{1 0 1 5}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 5}}\left( t \right) + \mathrm{x{1 0 1 4}}\left( t \right) + \mathrm{x{1 0 1 6}}\left( t \right) + \mathrm{x{2 3}}\left( t \right) + \mathrm{x{9 8 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 9}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 5}}\left( t \right) \ \frac{dx{1 0 1 6}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 6}}\left( t \right) + \mathrm{x{1 0 1 5}}\left( t \right) + \mathrm{x{1 0 1 7}}\left( t \right) + \mathrm{x{2 4}}\left( t \right) + \mathrm{x{9 8 4}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 0}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 6}}\left( t \right) \ \frac{dx{1 0 1 7}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 7}}\left( t \right) + \mathrm{x{1 0 1 6}}\left( t \right) + \mathrm{x{1 0 1 8}}\left( t \right) + \mathrm{x{2 5}}\left( t \right) + \mathrm{x{9 8 5}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 1}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 7}}\left( t \right) \ \frac{dx{1 0 1 8}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 8}}\left( t \right) + \mathrm{x{1 0 1 7}}\left( t \right) + \mathrm{x{1 0 1 9}}\left( t \right) + \mathrm{x{2 6}}\left( t \right) + \mathrm{x{9 8 6}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 2}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 8}}\left( t \right) \ \frac{dx{1 0 1 9}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 1 9}}\left( t \right) + \mathrm{x{1 0 1 8}}\left( t \right) + \mathrm{x{1 0 2 0}}\left( t \right) + \mathrm{x{2 7}}\left( t \right) + \mathrm{x{9 8 7}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 1 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 3}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 1 9}}\left( t \right) \ \frac{dx{1 0 2 0}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 0}}\left( t \right) + \mathrm{x{1 0 1 9}}\left( t \right) + \mathrm{x{1 0 2 1}}\left( t \right) + \mathrm{x{2 8}}\left( t \right) + \mathrm{x{9 8 8}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 4}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2 0}}\left( t \right) \ \frac{dx{1 0 2 1}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 1}}\left( t \right) + \mathrm{x{1 0 2 0}}\left( t \right) + \mathrm{x{1 0 2 2}}\left( t \right) + \mathrm{x{2 9}}\left( t \right) + \mathrm{x{9 8 9}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 5}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2 1}}\left( t \right) \ \frac{dx{1 0 2 2}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 2}}\left( t \right) + \mathrm{x{1 0 2 1}}\left( t \right) + \mathrm{x{1 0 2 3}}\left( t \right) + \mathrm{x{3 0}}\left( t \right) + \mathrm{x{9 9 0}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 6}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2 2}}\left( t \right) \ \frac{dx{1 0 2 3}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 3}}\left( t \right) + \mathrm{x{1 0 2 2}}\left( t \right) + \mathrm{x{1 0 2 4}}\left( t \right) + \mathrm{x{3 1}}\left( t \right) + \mathrm{x{9 9 1}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 7}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2 3}}\left( t \right) \ \frac{dx{1 0 2 4}(t)}{dt} =& \alpha2 + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 4}}\left( t \right) + \mathrm{x{1 0 2 3}}\left( t \right) + \mathrm{x{3 2}}\left( t \right) + \mathrm{x{9 9 2}}\left( t \right) + \mathrm{x{9 9 3}}\left( t \right) \right)}{\alpha4^{2}} + \left( \mathrm{x{1 0 2 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 8}}\left( t \right) - \left( 1 + \alpha1 \right) \mathrm{x{1 0 2 4}}\left( t \right) \ \frac{dx{1 0 2 5}(t)}{dt} =& \alpha1 \mathrm{x1}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 5}}\left( t \right) + \mathrm{x{1 0 2 6}}\left( t \right) + \mathrm{x{1 0 5 6}}\left( t \right) + \mathrm{x{1 0 5 7}}\left( t \right) + \mathrm{x{2 0 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x1}\left( t \right) \right)^{2} \mathrm{x{1 0 2 5}}\left( t \right) \ \frac{dx{1 0 2 6}(t)}{dt} =& \alpha1 \mathrm{x2}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 6}}\left( t \right) + \mathrm{x{1 0 2 5}}\left( t \right) + \mathrm{x{1 0 2 7}}\left( t \right) + \mathrm{x{1 0 5 8}}\left( t \right) + \mathrm{x{2 0 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x2}\left( t \right) \right)^{2} \mathrm{x{1 0 2 6}}\left( t \right) \ \frac{dx{1 0 2 7}(t)}{dt} =& \alpha1 \mathrm{x3}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 7}}\left( t \right) + \mathrm{x{1 0 2 6}}\left( t \right) + \mathrm{x{1 0 2 8}}\left( t \right) + \mathrm{x{1 0 5 9}}\left( t \right) + \mathrm{x{2 0 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x3}\left( t \right) \right)^{2} \mathrm{x{1 0 2 7}}\left( t \right) \ \frac{dx{1 0 2 8}(t)}{dt} =& \alpha1 \mathrm{x4}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 8}}\left( t \right) + \mathrm{x{1 0 2 7}}\left( t \right) + \mathrm{x{1 0 2 9}}\left( t \right) + \mathrm{x{1 0 6 0}}\left( t \right) + \mathrm{x{2 0 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x4}\left( t \right) \right)^{2} \mathrm{x{1 0 2 8}}\left( t \right) \ \frac{dx{1 0 2 9}(t)}{dt} =& \alpha1 \mathrm{x5}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 2 9}}\left( t \right) + \mathrm{x{1 0 2 8}}\left( t \right) + \mathrm{x{1 0 3 0}}\left( t \right) + \mathrm{x{1 0 6 1}}\left( t \right) + \mathrm{x{2 0 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x5}\left( t \right) \right)^{2} \mathrm{x{1 0 2 9}}\left( t \right) \ \frac{dx{1 0 3 0}(t)}{dt} =& \alpha1 \mathrm{x6}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 0}}\left( t \right) + \mathrm{x{1 0 2 9}}\left( t \right) + \mathrm{x{1 0 3 1}}\left( t \right) + \mathrm{x{1 0 6 2}}\left( t \right) + \mathrm{x{2 0 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x6}\left( t \right) \right)^{2} \mathrm{x{1 0 3 0}}\left( t \right) \ \frac{dx{1 0 3 1}(t)}{dt} =& \alpha1 \mathrm{x7}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 1}}\left( t \right) + \mathrm{x{1 0 3 0}}\left( t \right) + \mathrm{x{1 0 3 2}}\left( t \right) + \mathrm{x{1 0 6 3}}\left( t \right) + \mathrm{x{2 0 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x7}\left( t \right) \right)^{2} \mathrm{x{1 0 3 1}}\left( t \right) \ \frac{dx{1 0 3 2}(t)}{dt} =& \alpha1 \mathrm{x8}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 2}}\left( t \right) + \mathrm{x{1 0 3 1}}\left( t \right) + \mathrm{x{1 0 3 3}}\left( t \right) + \mathrm{x{1 0 6 4}}\left( t \right) + \mathrm{x{2 0 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x8}\left( t \right) \right)^{2} \mathrm{x{1 0 3 2}}\left( t \right) \ \frac{dx{1 0 3 3}(t)}{dt} =& \alpha1 \mathrm{x9}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 3}}\left( t \right) + \mathrm{x{1 0 3 2}}\left( t \right) + \mathrm{x{1 0 3 4}}\left( t \right) + \mathrm{x{1 0 6 5}}\left( t \right) + \mathrm{x{2 0 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x9}\left( t \right) \right)^{2} \mathrm{x{1 0 3 3}}\left( t \right) \ \frac{dx{1 0 3 4}(t)}{dt} =& \alpha1 \mathrm{x{1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 4}}\left( t \right) + \mathrm{x{1 0 3 3}}\left( t \right) + \mathrm{x{1 0 3 5}}\left( t \right) + \mathrm{x{1 0 6 6}}\left( t \right) + \mathrm{x{2 0 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 4}}\left( t \right) \ \frac{dx{1 0 3 5}(t)}{dt} =& \alpha1 \mathrm{x{1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 5}}\left( t \right) + \mathrm{x{1 0 3 4}}\left( t \right) + \mathrm{x{1 0 3 6}}\left( t \right) + \mathrm{x{1 0 6 7}}\left( t \right) + \mathrm{x{2 0 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 5}}\left( t \right) \ \frac{dx{1 0 3 6}(t)}{dt} =& \alpha1 \mathrm{x{1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 6}}\left( t \right) + \mathrm{x{1 0 3 5}}\left( t \right) + \mathrm{x{1 0 3 7}}\left( t \right) + \mathrm{x{1 0 6 8}}\left( t \right) + \mathrm{x{2 0 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 6}}\left( t \right) \ \frac{dx{1 0 3 7}(t)}{dt} =& \alpha1 \mathrm{x{1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 7}}\left( t \right) + \mathrm{x{1 0 3 6}}\left( t \right) + \mathrm{x{1 0 3 8}}\left( t \right) + \mathrm{x{1 0 6 9}}\left( t \right) + \mathrm{x{2 0 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 7}}\left( t \right) \ \frac{dx{1 0 3 8}(t)}{dt} =& \alpha1 \mathrm{x{1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 8}}\left( t \right) + \mathrm{x{1 0 3 7}}\left( t \right) + \mathrm{x{1 0 3 9}}\left( t \right) + \mathrm{x{1 0 7 0}}\left( t \right) + \mathrm{x{2 0 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 8}}\left( t \right) \ \frac{dx{1 0 3 9}(t)}{dt} =& \alpha1 \mathrm{x{1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 3 9}}\left( t \right) + \mathrm{x{1 0 3 8}}\left( t \right) + \mathrm{x{1 0 4 0}}\left( t \right) + \mathrm{x{1 0 7 1}}\left( t \right) + \mathrm{x{2 0 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 3 9}}\left( t \right) \ \frac{dx{1 0 4 0}(t)}{dt} =& \alpha1 \mathrm{x{1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 0}}\left( t \right) + \mathrm{x{1 0 3 9}}\left( t \right) + \mathrm{x{1 0 4 1}}\left( t \right) + \mathrm{x{1 0 7 2}}\left( t \right) + \mathrm{x{2 0 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 0}}\left( t \right) \ \frac{dx{1 0 4 1}(t)}{dt} =& \alpha1 \mathrm{x{1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 1}}\left( t \right) + \mathrm{x{1 0 4 0}}\left( t \right) + \mathrm{x{1 0 4 2}}\left( t \right) + \mathrm{x{1 0 7 3}}\left( t \right) + \mathrm{x{2 0 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 1}}\left( t \right) \ \frac{dx{1 0 4 2}(t)}{dt} =& \alpha1 \mathrm{x{1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 2}}\left( t \right) + \mathrm{x{1 0 4 1}}\left( t \right) + \mathrm{x{1 0 4 3}}\left( t \right) + \mathrm{x{1 0 7 4}}\left( t \right) + \mathrm{x{2 0 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 2}}\left( t \right) \ \frac{dx{1 0 4 3}(t)}{dt} =& \alpha1 \mathrm{x{1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 3}}\left( t \right) + \mathrm{x{1 0 4 2}}\left( t \right) + \mathrm{x{1 0 4 4}}\left( t \right) + \mathrm{x{1 0 7 5}}\left( t \right) + \mathrm{x{2 0 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 3}}\left( t \right) \ \frac{dx{1 0 4 4}(t)}{dt} =& \alpha1 \mathrm{x{2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 4}}\left( t \right) + \mathrm{x{1 0 4 3}}\left( t \right) + \mathrm{x{1 0 4 5}}\left( t \right) + \mathrm{x{1 0 7 6}}\left( t \right) + \mathrm{x{2 0 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 4}}\left( t \right) \ \frac{dx{1 0 4 5}(t)}{dt} =& \alpha1 \mathrm{x{2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 5}}\left( t \right) + \mathrm{x{1 0 4 4}}\left( t \right) + \mathrm{x{1 0 4 6}}\left( t \right) + \mathrm{x{1 0 7 7}}\left( t \right) + \mathrm{x{2 0 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 5}}\left( t \right) \ \frac{dx{1 0 4 6}(t)}{dt} =& \alpha1 \mathrm{x{2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 6}}\left( t \right) + \mathrm{x{1 0 4 5}}\left( t \right) + \mathrm{x{1 0 4 7}}\left( t \right) + \mathrm{x{1 0 7 8}}\left( t \right) + \mathrm{x{2 0 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 6}}\left( t \right) \ \frac{dx{1 0 4 7}(t)}{dt} =& \alpha1 \mathrm{x{2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 7}}\left( t \right) + \mathrm{x{1 0 4 6}}\left( t \right) + \mathrm{x{1 0 4 8}}\left( t \right) + \mathrm{x{1 0 7 9}}\left( t \right) + \mathrm{x{2 0 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 7}}\left( t \right) \ \frac{dx{1 0 4 8}(t)}{dt} =& \alpha1 \mathrm{x{2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 8}}\left( t \right) + \mathrm{x{1 0 4 7}}\left( t \right) + \mathrm{x{1 0 4 9}}\left( t \right) + \mathrm{x{1 0 8 0}}\left( t \right) + \mathrm{x{2 0 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 8}}\left( t \right) \ \frac{dx{1 0 4 9}(t)}{dt} =& \alpha1 \mathrm{x{2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 4 9}}\left( t \right) + \mathrm{x{1 0 4 8}}\left( t \right) + \mathrm{x{1 0 5 0}}\left( t \right) + \mathrm{x{1 0 8 1}}\left( t \right) + \mathrm{x{2 0 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 4 9}}\left( t \right) \ \frac{dx{1 0 5 0}(t)}{dt} =& \alpha1 \mathrm{x{2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 0}}\left( t \right) + \mathrm{x{1 0 4 9}}\left( t \right) + \mathrm{x{1 0 5 1}}\left( t \right) + \mathrm{x{1 0 8 2}}\left( t \right) + \mathrm{x{2 0 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 0}}\left( t \right) \ \frac{dx{1 0 5 1}(t)}{dt} =& \alpha1 \mathrm{x{2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 1}}\left( t \right) + \mathrm{x{1 0 5 0}}\left( t \right) + \mathrm{x{1 0 5 2}}\left( t \right) + \mathrm{x{1 0 8 3}}\left( t \right) + \mathrm{x{2 0 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 1}}\left( t \right) \ \frac{dx{1 0 5 2}(t)}{dt} =& \alpha1 \mathrm{x{2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 2}}\left( t \right) + \mathrm{x{1 0 5 1}}\left( t \right) + \mathrm{x{1 0 5 3}}\left( t \right) + \mathrm{x{1 0 8 4}}\left( t \right) + \mathrm{x{2 0 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 2}}\left( t \right) \ \frac{dx{1 0 5 3}(t)}{dt} =& \alpha1 \mathrm{x{2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 3}}\left( t \right) + \mathrm{x{1 0 5 2}}\left( t \right) + \mathrm{x{1 0 5 4}}\left( t \right) + \mathrm{x{1 0 8 5}}\left( t \right) + \mathrm{x{2 0 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 3}}\left( t \right) \ \frac{dx{1 0 5 4}(t)}{dt} =& \alpha1 \mathrm{x{3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 4}}\left( t \right) + \mathrm{x{1 0 5 3}}\left( t \right) + \mathrm{x{1 0 5 5}}\left( t \right) + \mathrm{x{1 0 8 6}}\left( t \right) + \mathrm{x{2 0 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 4}}\left( t \right) \ \frac{dx{1 0 5 5}(t)}{dt} =& \alpha1 \mathrm{x{3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 5}}\left( t \right) + \mathrm{x{1 0 5 4}}\left( t \right) + \mathrm{x{1 0 5 6}}\left( t \right) + \mathrm{x{1 0 8 7}}\left( t \right) + \mathrm{x{2 0 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 5}}\left( t \right) \ \frac{dx{1 0 5 6}(t)}{dt} =& \alpha1 \mathrm{x{3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 6}}\left( t \right) + \mathrm{x{1 0 2 5}}\left( t \right) + \mathrm{x{1 0 5 5}}\left( t \right) + \mathrm{x{1 0 8 8}}\left( t \right) + \mathrm{x{2 0 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 6}}\left( t \right) \ \frac{dx{1 0 5 7}(t)}{dt} =& \alpha1 \mathrm{x{3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 7}}\left( t \right) + \mathrm{x{1 0 2 5}}\left( t \right) + \mathrm{x{1 0 5 8}}\left( t \right) + \mathrm{x{1 0 8 8}}\left( t \right) + \mathrm{x{1 0 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 7}}\left( t \right) \ \frac{dx{1 0 5 8}(t)}{dt} =& \alpha1 \mathrm{x{3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 8}}\left( t \right) + \mathrm{x{1 0 2 6}}\left( t \right) + \mathrm{x{1 0 5 7}}\left( t \right) + \mathrm{x{1 0 5 9}}\left( t \right) + \mathrm{x{1 0 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 8}}\left( t \right) \ \frac{dx{1 0 5 9}(t)}{dt} =& \alpha1 \mathrm{x{3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 5 9}}\left( t \right) + \mathrm{x{1 0 2 7}}\left( t \right) + \mathrm{x{1 0 5 8}}\left( t \right) + \mathrm{x{1 0 6 0}}\left( t \right) + \mathrm{x{1 0 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 5 9}}\left( t \right) \ \frac{dx{1 0 6 0}(t)}{dt} =& \alpha1 \mathrm{x{3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 0}}\left( t \right) + \mathrm{x{1 0 2 8}}\left( t \right) + \mathrm{x{1 0 5 9}}\left( t \right) + \mathrm{x{1 0 6 1}}\left( t \right) + \mathrm{x{1 0 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 0}}\left( t \right) \ \frac{dx{1 0 6 1}(t)}{dt} =& \alpha1 \mathrm{x{3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 1}}\left( t \right) + \mathrm{x{1 0 2 9}}\left( t \right) + \mathrm{x{1 0 6 0}}\left( t \right) + \mathrm{x{1 0 6 2}}\left( t \right) + \mathrm{x{1 0 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 1}}\left( t \right) \ \frac{dx{1 0 6 2}(t)}{dt} =& \alpha1 \mathrm{x{3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 2}}\left( t \right) + \mathrm{x{1 0 3 0}}\left( t \right) + \mathrm{x{1 0 6 1}}\left( t \right) + \mathrm{x{1 0 6 3}}\left( t \right) + \mathrm{x{1 0 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 2}}\left( t \right) \ \frac{dx{1 0 6 3}(t)}{dt} =& \alpha1 \mathrm{x{3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 3}}\left( t \right) + \mathrm{x{1 0 3 1}}\left( t \right) + \mathrm{x{1 0 6 2}}\left( t \right) + \mathrm{x{1 0 6 4}}\left( t \right) + \mathrm{x{1 0 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 3}}\left( t \right) \ \frac{dx{1 0 6 4}(t)}{dt} =& \alpha1 \mathrm{x{4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 4}}\left( t \right) + \mathrm{x{1 0 3 2}}\left( t \right) + \mathrm{x{1 0 6 3}}\left( t \right) + \mathrm{x{1 0 6 5}}\left( t \right) + \mathrm{x{1 0 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 4}}\left( t \right) \ \frac{dx{1 0 6 5}(t)}{dt} =& \alpha1 \mathrm{x{4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 5}}\left( t \right) + \mathrm{x{1 0 3 3}}\left( t \right) + \mathrm{x{1 0 6 4}}\left( t \right) + \mathrm{x{1 0 6 6}}\left( t \right) + \mathrm{x{1 0 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 5}}\left( t \right) \ \frac{dx{1 0 6 6}(t)}{dt} =& \alpha1 \mathrm{x{4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 6}}\left( t \right) + \mathrm{x{1 0 3 4}}\left( t \right) + \mathrm{x{1 0 6 5}}\left( t \right) + \mathrm{x{1 0 6 7}}\left( t \right) + \mathrm{x{1 0 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 6}}\left( t \right) \ \frac{dx{1 0 6 7}(t)}{dt} =& \alpha1 \mathrm{x{4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 7}}\left( t \right) + \mathrm{x{1 0 3 5}}\left( t \right) + \mathrm{x{1 0 6 6}}\left( t \right) + \mathrm{x{1 0 6 8}}\left( t \right) + \mathrm{x{1 0 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 7}}\left( t \right) \ \frac{dx{1 0 6 8}(t)}{dt} =& \alpha1 \mathrm{x{4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 8}}\left( t \right) + \mathrm{x{1 0 3 6}}\left( t \right) + \mathrm{x{1 0 6 7}}\left( t \right) + \mathrm{x{1 0 6 9}}\left( t \right) + \mathrm{x{1 1 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 8}}\left( t \right) \ \frac{dx{1 0 6 9}(t)}{dt} =& \alpha1 \mathrm{x{4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 6 9}}\left( t \right) + \mathrm{x{1 0 3 7}}\left( t \right) + \mathrm{x{1 0 6 8}}\left( t \right) + \mathrm{x{1 0 7 0}}\left( t \right) + \mathrm{x{1 1 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 6 9}}\left( t \right) \ \frac{dx{1 0 7 0}(t)}{dt} =& \alpha1 \mathrm{x{4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 0}}\left( t \right) + \mathrm{x{1 0 3 8}}\left( t \right) + \mathrm{x{1 0 6 9}}\left( t \right) + \mathrm{x{1 0 7 1}}\left( t \right) + \mathrm{x{1 1 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 0}}\left( t \right) \ \frac{dx{1 0 7 1}(t)}{dt} =& \alpha1 \mathrm{x{4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 1}}\left( t \right) + \mathrm{x{1 0 3 9}}\left( t \right) + \mathrm{x{1 0 7 0}}\left( t \right) + \mathrm{x{1 0 7 2}}\left( t \right) + \mathrm{x{1 1 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 1}}\left( t \right) \ \frac{dx{1 0 7 2}(t)}{dt} =& \alpha1 \mathrm{x{4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 2}}\left( t \right) + \mathrm{x{1 0 4 0}}\left( t \right) + \mathrm{x{1 0 7 1}}\left( t \right) + \mathrm{x{1 0 7 3}}\left( t \right) + \mathrm{x{1 1 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 2}}\left( t \right) \ \frac{dx{1 0 7 3}(t)}{dt} =& \alpha1 \mathrm{x{4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 3}}\left( t \right) + \mathrm{x{1 0 4 1}}\left( t \right) + \mathrm{x{1 0 7 2}}\left( t \right) + \mathrm{x{1 0 7 4}}\left( t \right) + \mathrm{x{1 1 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 3}}\left( t \right) \ \frac{dx{1 0 7 4}(t)}{dt} =& \alpha1 \mathrm{x{5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 4}}\left( t \right) + \mathrm{x{1 0 4 2}}\left( t \right) + \mathrm{x{1 0 7 3}}\left( t \right) + \mathrm{x{1 0 7 5}}\left( t \right) + \mathrm{x{1 1 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 4}}\left( t \right) \ \frac{dx{1 0 7 5}(t)}{dt} =& \alpha1 \mathrm{x{5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 5}}\left( t \right) + \mathrm{x{1 0 4 3}}\left( t \right) + \mathrm{x{1 0 7 4}}\left( t \right) + \mathrm{x{1 0 7 6}}\left( t \right) + \mathrm{x{1 1 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 5}}\left( t \right) \ \frac{dx{1 0 7 6}(t)}{dt} =& \alpha1 \mathrm{x{5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 6}}\left( t \right) + \mathrm{x{1 0 4 4}}\left( t \right) + \mathrm{x{1 0 7 5}}\left( t \right) + \mathrm{x{1 0 7 7}}\left( t \right) + \mathrm{x{1 1 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 6}}\left( t \right) \ \frac{dx{1 0 7 7}(t)}{dt} =& \alpha1 \mathrm{x{5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 7}}\left( t \right) + \mathrm{x{1 0 4 5}}\left( t \right) + \mathrm{x{1 0 7 6}}\left( t \right) + \mathrm{x{1 0 7 8}}\left( t \right) + \mathrm{x{1 1 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 7}}\left( t \right) \ \frac{dx{1 0 7 8}(t)}{dt} =& \alpha1 \mathrm{x{5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 8}}\left( t \right) + \mathrm{x{1 0 4 6}}\left( t \right) + \mathrm{x{1 0 7 7}}\left( t \right) + \mathrm{x{1 0 7 9}}\left( t \right) + \mathrm{x{1 1 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 8}}\left( t \right) \ \frac{dx{1 0 7 9}(t)}{dt} =& \alpha1 \mathrm{x{5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 7 9}}\left( t \right) + \mathrm{x{1 0 4 7}}\left( t \right) + \mathrm{x{1 0 7 8}}\left( t \right) + \mathrm{x{1 0 8 0}}\left( t \right) + \mathrm{x{1 1 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 7 9}}\left( t \right) \ \frac{dx{1 0 8 0}(t)}{dt} =& \alpha1 \mathrm{x{5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 0}}\left( t \right) + \mathrm{x{1 0 4 8}}\left( t \right) + \mathrm{x{1 0 7 9}}\left( t \right) + \mathrm{x{1 0 8 1}}\left( t \right) + \mathrm{x{1 1 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 0}}\left( t \right) \ \frac{dx{1 0 8 1}(t)}{dt} =& \alpha1 \mathrm{x{5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 1}}\left( t \right) + \mathrm{x{1 0 4 9}}\left( t \right) + \mathrm{x{1 0 8 0}}\left( t \right) + \mathrm{x{1 0 8 2}}\left( t \right) + \mathrm{x{1 1 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 1}}\left( t \right) \ \frac{dx{1 0 8 2}(t)}{dt} =& \alpha1 \mathrm{x{5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 2}}\left( t \right) + \mathrm{x{1 0 5 0}}\left( t \right) + \mathrm{x{1 0 8 1}}\left( t \right) + \mathrm{x{1 0 8 3}}\left( t \right) + \mathrm{x{1 1 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 2}}\left( t \right) \ \frac{dx{1 0 8 3}(t)}{dt} =& \alpha1 \mathrm{x{5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 3}}\left( t \right) + \mathrm{x{1 0 5 1}}\left( t \right) + \mathrm{x{1 0 8 2}}\left( t \right) + \mathrm{x{1 0 8 4}}\left( t \right) + \mathrm{x{1 1 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 3}}\left( t \right) \ \frac{dx{1 0 8 4}(t)}{dt} =& \alpha1 \mathrm{x{6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 4}}\left( t \right) + \mathrm{x{1 0 5 2}}\left( t \right) + \mathrm{x{1 0 8 3}}\left( t \right) + \mathrm{x{1 0 8 5}}\left( t \right) + \mathrm{x{1 1 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 4}}\left( t \right) \ \frac{dx{1 0 8 5}(t)}{dt} =& \alpha1 \mathrm{x{6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 5}}\left( t \right) + \mathrm{x{1 0 5 3}}\left( t \right) + \mathrm{x{1 0 8 4}}\left( t \right) + \mathrm{x{1 0 8 6}}\left( t \right) + \mathrm{x{1 1 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 5}}\left( t \right) \ \frac{dx{1 0 8 6}(t)}{dt} =& \alpha1 \mathrm{x{6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 6}}\left( t \right) + \mathrm{x{1 0 5 4}}\left( t \right) + \mathrm{x{1 0 8 5}}\left( t \right) + \mathrm{x{1 0 8 7}}\left( t \right) + \mathrm{x{1 1 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 6}}\left( t \right) \ \frac{dx{1 0 8 7}(t)}{dt} =& \alpha1 \mathrm{x{6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 7}}\left( t \right) + \mathrm{x{1 0 5 5}}\left( t \right) + \mathrm{x{1 0 8 6}}\left( t \right) + \mathrm{x{1 0 8 8}}\left( t \right) + \mathrm{x{1 1 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 7}}\left( t \right) \ \frac{dx{1 0 8 8}(t)}{dt} =& \alpha1 \mathrm{x{6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 8}}\left( t \right) + \mathrm{x{1 0 5 6}}\left( t \right) + \mathrm{x{1 0 5 7}}\left( t \right) + \mathrm{x{1 0 8 7}}\left( t \right) + \mathrm{x{1 1 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 8}}\left( t \right) \ \frac{dx{1 0 8 9}(t)}{dt} =& \alpha1 \mathrm{x{6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 8 9}}\left( t \right) + \mathrm{x{1 0 5 7}}\left( t \right) + \mathrm{x{1 0 9 0}}\left( t \right) + \mathrm{x{1 1 2 0}}\left( t \right) + \mathrm{x{1 1 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 8 9}}\left( t \right) \ \frac{dx{1 0 9 0}(t)}{dt} =& \alpha1 \mathrm{x{6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 0}}\left( t \right) + \mathrm{x{1 0 5 8}}\left( t \right) + \mathrm{x{1 0 8 9}}\left( t \right) + \mathrm{x{1 0 9 1}}\left( t \right) + \mathrm{x{1 1 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 0}}\left( t \right) \ \frac{dx{1 0 9 1}(t)}{dt} =& \alpha1 \mathrm{x{6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 1}}\left( t \right) + \mathrm{x{1 0 5 9}}\left( t \right) + \mathrm{x{1 0 9 0}}\left( t \right) + \mathrm{x{1 0 9 2}}\left( t \right) + \mathrm{x{1 1 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 1}}\left( t \right) \ \frac{dx{1 0 9 2}(t)}{dt} =& \alpha1 \mathrm{x{6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 2}}\left( t \right) + \mathrm{x{1 0 6 0}}\left( t \right) + \mathrm{x{1 0 9 1}}\left( t \right) + \mathrm{x{1 0 9 3}}\left( t \right) + \mathrm{x{1 1 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 2}}\left( t \right) \ \frac{dx{1 0 9 3}(t)}{dt} =& \alpha1 \mathrm{x{6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 3}}\left( t \right) + \mathrm{x{1 0 6 1}}\left( t \right) + \mathrm{x{1 0 9 2}}\left( t \right) + \mathrm{x{1 0 9 4}}\left( t \right) + \mathrm{x{1 1 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 3}}\left( t \right) \ \frac{dx{1 0 9 4}(t)}{dt} =& \alpha1 \mathrm{x{7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 4}}\left( t \right) + \mathrm{x{1 0 6 2}}\left( t \right) + \mathrm{x{1 0 9 3}}\left( t \right) + \mathrm{x{1 0 9 5}}\left( t \right) + \mathrm{x{1 1 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 4}}\left( t \right) \ \frac{dx{1 0 9 5}(t)}{dt} =& \alpha1 \mathrm{x{7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 5}}\left( t \right) + \mathrm{x{1 0 6 3}}\left( t \right) + \mathrm{x{1 0 9 4}}\left( t \right) + \mathrm{x{1 0 9 6}}\left( t \right) + \mathrm{x{1 1 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 5}}\left( t \right) \ \frac{dx{1 0 9 6}(t)}{dt} =& \alpha1 \mathrm{x{7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 6}}\left( t \right) + \mathrm{x{1 0 6 4}}\left( t \right) + \mathrm{x{1 0 9 5}}\left( t \right) + \mathrm{x{1 0 9 7}}\left( t \right) + \mathrm{x{1 1 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 6}}\left( t \right) \ \frac{dx{1 0 9 7}(t)}{dt} =& \alpha1 \mathrm{x{7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 7}}\left( t \right) + \mathrm{x{1 0 6 5}}\left( t \right) + \mathrm{x{1 0 9 6}}\left( t \right) + \mathrm{x{1 0 9 8}}\left( t \right) + \mathrm{x{1 1 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 7}}\left( t \right) \ \frac{dx{1 0 9 8}(t)}{dt} =& \alpha1 \mathrm{x{7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 8}}\left( t \right) + \mathrm{x{1 0 6 6}}\left( t \right) + \mathrm{x{1 0 9 7}}\left( t \right) + \mathrm{x{1 0 9 9}}\left( t \right) + \mathrm{x{1 1 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 8}}\left( t \right) \ \frac{dx{1 0 9 9}(t)}{dt} =& \alpha1 \mathrm{x{7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 0 9 9}}\left( t \right) + \mathrm{x{1 0 6 7}}\left( t \right) + \mathrm{x{1 0 9 8}}\left( t \right) + \mathrm{x{1 1 0 0}}\left( t \right) + \mathrm{x{1 1 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5}}\left( t \right) \right)^{2} \mathrm{x{1 0 9 9}}\left( t \right) \ \frac{dx{1 1 0 0}(t)}{dt} =& \alpha1 \mathrm{x{7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 0}}\left( t \right) + \mathrm{x{1 0 6 8}}\left( t \right) + \mathrm{x{1 0 9 9}}\left( t \right) + \mathrm{x{1 1 0 1}}\left( t \right) + \mathrm{x{1 1 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 0}}\left( t \right) \ \frac{dx{1 1 0 1}(t)}{dt} =& \alpha1 \mathrm{x{7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 1}}\left( t \right) + \mathrm{x{1 0 6 9}}\left( t \right) + \mathrm{x{1 1 0 0}}\left( t \right) + \mathrm{x{1 1 0 2}}\left( t \right) + \mathrm{x{1 1 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 1}}\left( t \right) \ \frac{dx{1 1 0 2}(t)}{dt} =& \alpha1 \mathrm{x{7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 2}}\left( t \right) + \mathrm{x{1 0 7 0}}\left( t \right) + \mathrm{x{1 1 0 1}}\left( t \right) + \mathrm{x{1 1 0 3}}\left( t \right) + \mathrm{x{1 1 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 2}}\left( t \right) \ \frac{dx{1 1 0 3}(t)}{dt} =& \alpha1 \mathrm{x{7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 3}}\left( t \right) + \mathrm{x{1 0 7 1}}\left( t \right) + \mathrm{x{1 1 0 2}}\left( t \right) + \mathrm{x{1 1 0 4}}\left( t \right) + \mathrm{x{1 1 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 3}}\left( t \right) \ \frac{dx{1 1 0 4}(t)}{dt} =& \alpha1 \mathrm{x{8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 4}}\left( t \right) + \mathrm{x{1 0 7 2}}\left( t \right) + \mathrm{x{1 1 0 3}}\left( t \right) + \mathrm{x{1 1 0 5}}\left( t \right) + \mathrm{x{1 1 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 4}}\left( t \right) \ \frac{dx{1 1 0 5}(t)}{dt} =& \alpha1 \mathrm{x{8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 5}}\left( t \right) + \mathrm{x{1 0 7 3}}\left( t \right) + \mathrm{x{1 1 0 4}}\left( t \right) + \mathrm{x{1 1 0 6}}\left( t \right) + \mathrm{x{1 1 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 5}}\left( t \right) \ \frac{dx{1 1 0 6}(t)}{dt} =& \alpha1 \mathrm{x{8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 6}}\left( t \right) + \mathrm{x{1 0 7 4}}\left( t \right) + \mathrm{x{1 1 0 5}}\left( t \right) + \mathrm{x{1 1 0 7}}\left( t \right) + \mathrm{x{1 1 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 6}}\left( t \right) \ \frac{dx{1 1 0 7}(t)}{dt} =& \alpha1 \mathrm{x{8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 7}}\left( t \right) + \mathrm{x{1 0 7 5}}\left( t \right) + \mathrm{x{1 1 0 6}}\left( t \right) + \mathrm{x{1 1 0 8}}\left( t \right) + \mathrm{x{1 1 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 7}}\left( t \right) \ \frac{dx{1 1 0 8}(t)}{dt} =& \alpha1 \mathrm{x{8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 8}}\left( t \right) + \mathrm{x{1 0 7 6}}\left( t \right) + \mathrm{x{1 1 0 7}}\left( t \right) + \mathrm{x{1 1 0 9}}\left( t \right) + \mathrm{x{1 1 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 8}}\left( t \right) \ \frac{dx{1 1 0 9}(t)}{dt} =& \alpha1 \mathrm{x{8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 0 9}}\left( t \right) + \mathrm{x{1 0 7 7}}\left( t \right) + \mathrm{x{1 1 0 8}}\left( t \right) + \mathrm{x{1 1 1 0}}\left( t \right) + \mathrm{x{1 1 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 0 9}}\left( t \right) \ \frac{dx{1 1 1 0}(t)}{dt} =& \alpha1 \mathrm{x{8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 0}}\left( t \right) + \mathrm{x{1 0 7 8}}\left( t \right) + \mathrm{x{1 1 0 9}}\left( t \right) + \mathrm{x{1 1 1 1}}\left( t \right) + \mathrm{x{1 1 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 0}}\left( t \right) \ \frac{dx{1 1 1 1}(t)}{dt} =& \alpha1 \mathrm{x{8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 1}}\left( t \right) + \mathrm{x{1 0 7 9}}\left( t \right) + \mathrm{x{1 1 1 0}}\left( t \right) + \mathrm{x{1 1 1 2}}\left( t \right) + \mathrm{x{1 1 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 1}}\left( t \right) \ \frac{dx{1 1 1 2}(t)}{dt} =& \alpha1 \mathrm{x{8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 2}}\left( t \right) + \mathrm{x{1 0 8 0}}\left( t \right) + \mathrm{x{1 1 1 1}}\left( t \right) + \mathrm{x{1 1 1 3}}\left( t \right) + \mathrm{x{1 1 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 2}}\left( t \right) \ \frac{dx{1 1 1 3}(t)}{dt} =& \alpha1 \mathrm{x{8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 3}}\left( t \right) + \mathrm{x{1 0 8 1}}\left( t \right) + \mathrm{x{1 1 1 2}}\left( t \right) + \mathrm{x{1 1 1 4}}\left( t \right) + \mathrm{x{1 1 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 3}}\left( t \right) \ \frac{dx{1 1 1 4}(t)}{dt} =& \alpha1 \mathrm{x{9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 4}}\left( t \right) + \mathrm{x{1 0 8 2}}\left( t \right) + \mathrm{x{1 1 1 3}}\left( t \right) + \mathrm{x{1 1 1 5}}\left( t \right) + \mathrm{x{1 1 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 4}}\left( t \right) \ \frac{dx{1 1 1 5}(t)}{dt} =& \alpha1 \mathrm{x{9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 5}}\left( t \right) + \mathrm{x{1 0 8 3}}\left( t \right) + \mathrm{x{1 1 1 4}}\left( t \right) + \mathrm{x{1 1 1 6}}\left( t \right) + \mathrm{x{1 1 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 5}}\left( t \right) \ \frac{dx{1 1 1 6}(t)}{dt} =& \alpha1 \mathrm{x{9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 6}}\left( t \right) + \mathrm{x{1 0 8 4}}\left( t \right) + \mathrm{x{1 1 1 5}}\left( t \right) + \mathrm{x{1 1 1 7}}\left( t \right) + \mathrm{x{1 1 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 6}}\left( t \right) \ \frac{dx{1 1 1 7}(t)}{dt} =& \alpha1 \mathrm{x{9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 7}}\left( t \right) + \mathrm{x{1 0 8 5}}\left( t \right) + \mathrm{x{1 1 1 6}}\left( t \right) + \mathrm{x{1 1 1 8}}\left( t \right) + \mathrm{x{1 1 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 7}}\left( t \right) \ \frac{dx{1 1 1 8}(t)}{dt} =& \alpha1 \mathrm{x{9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 8}}\left( t \right) + \mathrm{x{1 0 8 6}}\left( t \right) + \mathrm{x{1 1 1 7}}\left( t \right) + \mathrm{x{1 1 1 9}}\left( t \right) + \mathrm{x{1 1 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 8}}\left( t \right) \ \frac{dx{1 1 1 9}(t)}{dt} =& \alpha1 \mathrm{x{9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 1 9}}\left( t \right) + \mathrm{x{1 0 8 7}}\left( t \right) + \mathrm{x{1 1 1 8}}\left( t \right) + \mathrm{x{1 1 2 0}}\left( t \right) + \mathrm{x{1 1 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 1 9}}\left( t \right) \ \frac{dx{1 1 2 0}(t)}{dt} =& \alpha1 \mathrm{x{9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 0}}\left( t \right) + \mathrm{x{1 0 8 8}}\left( t \right) + \mathrm{x{1 0 8 9}}\left( t \right) + \mathrm{x{1 1 1 9}}\left( t \right) + \mathrm{x{1 1 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 0}}\left( t \right) \ \frac{dx{1 1 2 1}(t)}{dt} =& \alpha1 \mathrm{x{9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 1}}\left( t \right) + \mathrm{x{1 0 8 9}}\left( t \right) + \mathrm{x{1 1 2 2}}\left( t \right) + \mathrm{x{1 1 5 2}}\left( t \right) + \mathrm{x{1 1 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 1}}\left( t \right) \ \frac{dx{1 1 2 2}(t)}{dt} =& \alpha1 \mathrm{x{9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 2}}\left( t \right) + \mathrm{x{1 0 9 0}}\left( t \right) + \mathrm{x{1 1 2 1}}\left( t \right) + \mathrm{x{1 1 2 3}}\left( t \right) + \mathrm{x{1 1 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 2}}\left( t \right) \ \frac{dx{1 1 2 3}(t)}{dt} =& \alpha1 \mathrm{x{9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 3}}\left( t \right) + \mathrm{x{1 0 9 1}}\left( t \right) + \mathrm{x{1 1 2 2}}\left( t \right) + \mathrm{x{1 1 2 4}}\left( t \right) + \mathrm{x{1 1 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 3}}\left( t \right) \ \frac{dx{1 1 2 4}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 4}}\left( t \right) + \mathrm{x{1 0 9 2}}\left( t \right) + \mathrm{x{1 1 2 3}}\left( t \right) + \mathrm{x{1 1 2 5}}\left( t \right) + \mathrm{x{1 1 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 4}}\left( t \right) \ \frac{dx{1 1 2 5}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 5}}\left( t \right) + \mathrm{x{1 0 9 3}}\left( t \right) + \mathrm{x{1 1 2 4}}\left( t \right) + \mathrm{x{1 1 2 6}}\left( t \right) + \mathrm{x{1 1 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 5}}\left( t \right) \ \frac{dx{1 1 2 6}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 6}}\left( t \right) + \mathrm{x{1 0 9 4}}\left( t \right) + \mathrm{x{1 1 2 5}}\left( t \right) + \mathrm{x{1 1 2 7}}\left( t \right) + \mathrm{x{1 1 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 6}}\left( t \right) \ \frac{dx{1 1 2 7}(t)}{dt} =& \alpha1 \mathrm{x{1 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 7}}\left( t \right) + \mathrm{x{1 0 9 5}}\left( t \right) + \mathrm{x{1 1 2 6}}\left( t \right) + \mathrm{x{1 1 2 8}}\left( t \right) + \mathrm{x{1 1 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 7}}\left( t \right) \ \frac{dx{1 1 2 8}(t)}{dt} =& \alpha1 \mathrm{x{1 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 8}}\left( t \right) + \mathrm{x{1 0 9 6}}\left( t \right) + \mathrm{x{1 1 2 7}}\left( t \right) + \mathrm{x{1 1 2 9}}\left( t \right) + \mathrm{x{1 1 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 8}}\left( t \right) \ \frac{dx{1 1 2 9}(t)}{dt} =& \alpha1 \mathrm{x{1 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 2 9}}\left( t \right) + \mathrm{x{1 0 9 7}}\left( t \right) + \mathrm{x{1 1 2 8}}\left( t \right) + \mathrm{x{1 1 3 0}}\left( t \right) + \mathrm{x{1 1 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 2 9}}\left( t \right) \ \frac{dx{1 1 3 0}(t)}{dt} =& \alpha1 \mathrm{x{1 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 0}}\left( t \right) + \mathrm{x{1 0 9 8}}\left( t \right) + \mathrm{x{1 1 2 9}}\left( t \right) + \mathrm{x{1 1 3 1}}\left( t \right) + \mathrm{x{1 1 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 0}}\left( t \right) \ \frac{dx{1 1 3 1}(t)}{dt} =& \alpha1 \mathrm{x{1 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 1}}\left( t \right) + \mathrm{x{1 0 9 9}}\left( t \right) + \mathrm{x{1 1 3 0}}\left( t \right) + \mathrm{x{1 1 3 2}}\left( t \right) + \mathrm{x{1 1 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 1}}\left( t \right) \ \frac{dx{1 1 3 2}(t)}{dt} =& \alpha1 \mathrm{x{1 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 2}}\left( t \right) + \mathrm{x{1 1 0 0}}\left( t \right) + \mathrm{x{1 1 3 1}}\left( t \right) + \mathrm{x{1 1 3 3}}\left( t \right) + \mathrm{x{1 1 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 2}}\left( t \right) \ \frac{dx{1 1 3 3}(t)}{dt} =& \alpha1 \mathrm{x{1 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 3}}\left( t \right) + \mathrm{x{1 1 0 1}}\left( t \right) + \mathrm{x{1 1 3 2}}\left( t \right) + \mathrm{x{1 1 3 4}}\left( t \right) + \mathrm{x{1 1 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 3}}\left( t \right) \ \frac{dx{1 1 3 4}(t)}{dt} =& \alpha1 \mathrm{x{1 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 4}}\left( t \right) + \mathrm{x{1 1 0 2}}\left( t \right) + \mathrm{x{1 1 3 3}}\left( t \right) + \mathrm{x{1 1 3 5}}\left( t \right) + \mathrm{x{1 1 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 4}}\left( t \right) \ \frac{dx{1 1 3 5}(t)}{dt} =& \alpha1 \mathrm{x{1 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 5}}\left( t \right) + \mathrm{x{1 1 0 3}}\left( t \right) + \mathrm{x{1 1 3 4}}\left( t \right) + \mathrm{x{1 1 3 6}}\left( t \right) + \mathrm{x{1 1 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 5}}\left( t \right) \ \frac{dx{1 1 3 6}(t)}{dt} =& \alpha1 \mathrm{x{1 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 6}}\left( t \right) + \mathrm{x{1 1 0 4}}\left( t \right) + \mathrm{x{1 1 3 5}}\left( t \right) + \mathrm{x{1 1 3 7}}\left( t \right) + \mathrm{x{1 1 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 6}}\left( t \right) \ \frac{dx{1 1 3 7}(t)}{dt} =& \alpha1 \mathrm{x{1 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 7}}\left( t \right) + \mathrm{x{1 1 0 5}}\left( t \right) + \mathrm{x{1 1 3 6}}\left( t \right) + \mathrm{x{1 1 3 8}}\left( t \right) + \mathrm{x{1 1 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 7}}\left( t \right) \ \frac{dx{1 1 3 8}(t)}{dt} =& \alpha1 \mathrm{x{1 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 8}}\left( t \right) + \mathrm{x{1 1 0 6}}\left( t \right) + \mathrm{x{1 1 3 7}}\left( t \right) + \mathrm{x{1 1 3 9}}\left( t \right) + \mathrm{x{1 1 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 8}}\left( t \right) \ \frac{dx{1 1 3 9}(t)}{dt} =& \alpha1 \mathrm{x{1 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 3 9}}\left( t \right) + \mathrm{x{1 1 0 7}}\left( t \right) + \mathrm{x{1 1 3 8}}\left( t \right) + \mathrm{x{1 1 4 0}}\left( t \right) + \mathrm{x{1 1 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 3 9}}\left( t \right) \ \frac{dx{1 1 4 0}(t)}{dt} =& \alpha1 \mathrm{x{1 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 0}}\left( t \right) + \mathrm{x{1 1 0 8}}\left( t \right) + \mathrm{x{1 1 3 9}}\left( t \right) + \mathrm{x{1 1 4 1}}\left( t \right) + \mathrm{x{1 1 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 0}}\left( t \right) \ \frac{dx{1 1 4 1}(t)}{dt} =& \alpha1 \mathrm{x{1 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 1}}\left( t \right) + \mathrm{x{1 1 0 9}}\left( t \right) + \mathrm{x{1 1 4 0}}\left( t \right) + \mathrm{x{1 1 4 2}}\left( t \right) + \mathrm{x{1 1 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 1}}\left( t \right) \ \frac{dx{1 1 4 2}(t)}{dt} =& \alpha1 \mathrm{x{1 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 2}}\left( t \right) + \mathrm{x{1 1 1 0}}\left( t \right) + \mathrm{x{1 1 4 1}}\left( t \right) + \mathrm{x{1 1 4 3}}\left( t \right) + \mathrm{x{1 1 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 2}}\left( t \right) \ \frac{dx{1 1 4 3}(t)}{dt} =& \alpha1 \mathrm{x{1 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 3}}\left( t \right) + \mathrm{x{1 1 1 1}}\left( t \right) + \mathrm{x{1 1 4 2}}\left( t \right) + \mathrm{x{1 1 4 4}}\left( t \right) + \mathrm{x{1 1 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 3}}\left( t \right) \ \frac{dx{1 1 4 4}(t)}{dt} =& \alpha1 \mathrm{x{1 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 4}}\left( t \right) + \mathrm{x{1 1 1 2}}\left( t \right) + \mathrm{x{1 1 4 3}}\left( t \right) + \mathrm{x{1 1 4 5}}\left( t \right) + \mathrm{x{1 1 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 4}}\left( t \right) \ \frac{dx{1 1 4 5}(t)}{dt} =& \alpha1 \mathrm{x{1 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 5}}\left( t \right) + \mathrm{x{1 1 1 3}}\left( t \right) + \mathrm{x{1 1 4 4}}\left( t \right) + \mathrm{x{1 1 4 6}}\left( t \right) + \mathrm{x{1 1 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 5}}\left( t \right) \ \frac{dx{1 1 4 6}(t)}{dt} =& \alpha1 \mathrm{x{1 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 6}}\left( t \right) + \mathrm{x{1 1 1 4}}\left( t \right) + \mathrm{x{1 1 4 5}}\left( t \right) + \mathrm{x{1 1 4 7}}\left( t \right) + \mathrm{x{1 1 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 6}}\left( t \right) \ \frac{dx{1 1 4 7}(t)}{dt} =& \alpha1 \mathrm{x{1 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 7}}\left( t \right) + \mathrm{x{1 1 1 5}}\left( t \right) + \mathrm{x{1 1 4 6}}\left( t \right) + \mathrm{x{1 1 4 8}}\left( t \right) + \mathrm{x{1 1 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 7}}\left( t \right) \ \frac{dx{1 1 4 8}(t)}{dt} =& \alpha1 \mathrm{x{1 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 8}}\left( t \right) + \mathrm{x{1 1 1 6}}\left( t \right) + \mathrm{x{1 1 4 7}}\left( t \right) + \mathrm{x{1 1 4 9}}\left( t \right) + \mathrm{x{1 1 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 8}}\left( t \right) \ \frac{dx{1 1 4 9}(t)}{dt} =& \alpha1 \mathrm{x{1 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 4 9}}\left( t \right) + \mathrm{x{1 1 1 7}}\left( t \right) + \mathrm{x{1 1 4 8}}\left( t \right) + \mathrm{x{1 1 5 0}}\left( t \right) + \mathrm{x{1 1 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 4 9}}\left( t \right) \ \frac{dx{1 1 5 0}(t)}{dt} =& \alpha1 \mathrm{x{1 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 0}}\left( t \right) + \mathrm{x{1 1 1 8}}\left( t \right) + \mathrm{x{1 1 4 9}}\left( t \right) + \mathrm{x{1 1 5 1}}\left( t \right) + \mathrm{x{1 1 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 0}}\left( t \right) \ \frac{dx{1 1 5 1}(t)}{dt} =& \alpha1 \mathrm{x{1 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 1}}\left( t \right) + \mathrm{x{1 1 1 9}}\left( t \right) + \mathrm{x{1 1 5 0}}\left( t \right) + \mathrm{x{1 1 5 2}}\left( t \right) + \mathrm{x{1 1 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 1}}\left( t \right) \ \frac{dx{1 1 5 2}(t)}{dt} =& \alpha1 \mathrm{x{1 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 2}}\left( t \right) + \mathrm{x{1 1 2 0}}\left( t \right) + \mathrm{x{1 1 2 1}}\left( t \right) + \mathrm{x{1 1 5 1}}\left( t \right) + \mathrm{x{1 1 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 2}}\left( t \right) \ \frac{dx{1 1 5 3}(t)}{dt} =& \alpha1 \mathrm{x{1 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 3}}\left( t \right) + \mathrm{x{1 1 2 1}}\left( t \right) + \mathrm{x{1 1 5 4}}\left( t \right) + \mathrm{x{1 1 8 4}}\left( t \right) + \mathrm{x{1 1 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 3}}\left( t \right) \ \frac{dx{1 1 5 4}(t)}{dt} =& \alpha1 \mathrm{x{1 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 4}}\left( t \right) + \mathrm{x{1 1 2 2}}\left( t \right) + \mathrm{x{1 1 5 3}}\left( t \right) + \mathrm{x{1 1 5 5}}\left( t \right) + \mathrm{x{1 1 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 4}}\left( t \right) \ \frac{dx{1 1 5 5}(t)}{dt} =& \alpha1 \mathrm{x{1 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 5}}\left( t \right) + \mathrm{x{1 1 2 3}}\left( t \right) + \mathrm{x{1 1 5 4}}\left( t \right) + \mathrm{x{1 1 5 6}}\left( t \right) + \mathrm{x{1 1 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 5}}\left( t \right) \ \frac{dx{1 1 5 6}(t)}{dt} =& \alpha1 \mathrm{x{1 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 6}}\left( t \right) + \mathrm{x{1 1 2 4}}\left( t \right) + \mathrm{x{1 1 5 5}}\left( t \right) + \mathrm{x{1 1 5 7}}\left( t \right) + \mathrm{x{1 1 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 6}}\left( t \right) \ \frac{dx{1 1 5 7}(t)}{dt} =& \alpha1 \mathrm{x{1 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 7}}\left( t \right) + \mathrm{x{1 1 2 5}}\left( t \right) + \mathrm{x{1 1 5 6}}\left( t \right) + \mathrm{x{1 1 5 8}}\left( t \right) + \mathrm{x{1 1 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 7}}\left( t \right) \ \frac{dx{1 1 5 8}(t)}{dt} =& \alpha1 \mathrm{x{1 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 8}}\left( t \right) + \mathrm{x{1 1 2 6}}\left( t \right) + \mathrm{x{1 1 5 7}}\left( t \right) + \mathrm{x{1 1 5 9}}\left( t \right) + \mathrm{x{1 1 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 8}}\left( t \right) \ \frac{dx{1 1 5 9}(t)}{dt} =& \alpha1 \mathrm{x{1 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 5 9}}\left( t \right) + \mathrm{x{1 1 2 7}}\left( t \right) + \mathrm{x{1 1 5 8}}\left( t \right) + \mathrm{x{1 1 6 0}}\left( t \right) + \mathrm{x{1 1 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 5 9}}\left( t \right) \ \frac{dx{1 1 6 0}(t)}{dt} =& \alpha1 \mathrm{x{1 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 0}}\left( t \right) + \mathrm{x{1 1 2 8}}\left( t \right) + \mathrm{x{1 1 5 9}}\left( t \right) + \mathrm{x{1 1 6 1}}\left( t \right) + \mathrm{x{1 1 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 0}}\left( t \right) \ \frac{dx{1 1 6 1}(t)}{dt} =& \alpha1 \mathrm{x{1 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 1}}\left( t \right) + \mathrm{x{1 1 2 9}}\left( t \right) + \mathrm{x{1 1 6 0}}\left( t \right) + \mathrm{x{1 1 6 2}}\left( t \right) + \mathrm{x{1 1 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 1}}\left( t \right) \ \frac{dx{1 1 6 2}(t)}{dt} =& \alpha1 \mathrm{x{1 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 2}}\left( t \right) + \mathrm{x{1 1 3 0}}\left( t \right) + \mathrm{x{1 1 6 1}}\left( t \right) + \mathrm{x{1 1 6 3}}\left( t \right) + \mathrm{x{1 1 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 2}}\left( t \right) \ \frac{dx{1 1 6 3}(t)}{dt} =& \alpha1 \mathrm{x{1 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 3}}\left( t \right) + \mathrm{x{1 1 3 1}}\left( t \right) + \mathrm{x{1 1 6 2}}\left( t \right) + \mathrm{x{1 1 6 4}}\left( t \right) + \mathrm{x{1 1 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 3}}\left( t \right) \ \frac{dx{1 1 6 4}(t)}{dt} =& \alpha1 \mathrm{x{1 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 4}}\left( t \right) + \mathrm{x{1 1 3 2}}\left( t \right) + \mathrm{x{1 1 6 3}}\left( t \right) + \mathrm{x{1 1 6 5}}\left( t \right) + \mathrm{x{1 1 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 4}}\left( t \right) \ \frac{dx{1 1 6 5}(t)}{dt} =& \alpha1 \mathrm{x{1 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 5}}\left( t \right) + \mathrm{x{1 1 3 3}}\left( t \right) + \mathrm{x{1 1 6 4}}\left( t \right) + \mathrm{x{1 1 6 6}}\left( t \right) + \mathrm{x{1 1 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 5}}\left( t \right) \ \frac{dx{1 1 6 6}(t)}{dt} =& \alpha1 \mathrm{x{1 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 6}}\left( t \right) + \mathrm{x{1 1 3 4}}\left( t \right) + \mathrm{x{1 1 6 5}}\left( t \right) + \mathrm{x{1 1 6 7}}\left( t \right) + \mathrm{x{1 1 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 6}}\left( t \right) \ \frac{dx{1 1 6 7}(t)}{dt} =& \alpha1 \mathrm{x{1 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 7}}\left( t \right) + \mathrm{x{1 1 3 5}}\left( t \right) + \mathrm{x{1 1 6 6}}\left( t \right) + \mathrm{x{1 1 6 8}}\left( t \right) + \mathrm{x{1 1 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 7}}\left( t \right) \ \frac{dx{1 1 6 8}(t)}{dt} =& \alpha1 \mathrm{x{1 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 8}}\left( t \right) + \mathrm{x{1 1 3 6}}\left( t \right) + \mathrm{x{1 1 6 7}}\left( t \right) + \mathrm{x{1 1 6 9}}\left( t \right) + \mathrm{x{1 2 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 8}}\left( t \right) \ \frac{dx{1 1 6 9}(t)}{dt} =& \alpha1 \mathrm{x{1 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 6 9}}\left( t \right) + \mathrm{x{1 1 3 7}}\left( t \right) + \mathrm{x{1 1 6 8}}\left( t \right) + \mathrm{x{1 1 7 0}}\left( t \right) + \mathrm{x{1 2 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 6 9}}\left( t \right) \ \frac{dx{1 1 7 0}(t)}{dt} =& \alpha1 \mathrm{x{1 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 0}}\left( t \right) + \mathrm{x{1 1 3 8}}\left( t \right) + \mathrm{x{1 1 6 9}}\left( t \right) + \mathrm{x{1 1 7 1}}\left( t \right) + \mathrm{x{1 2 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 0}}\left( t \right) \ \frac{dx{1 1 7 1}(t)}{dt} =& \alpha1 \mathrm{x{1 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 1}}\left( t \right) + \mathrm{x{1 1 3 9}}\left( t \right) + \mathrm{x{1 1 7 0}}\left( t \right) + \mathrm{x{1 1 7 2}}\left( t \right) + \mathrm{x{1 2 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 1}}\left( t \right) \ \frac{dx{1 1 7 2}(t)}{dt} =& \alpha1 \mathrm{x{1 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 2}}\left( t \right) + \mathrm{x{1 1 4 0}}\left( t \right) + \mathrm{x{1 1 7 1}}\left( t \right) + \mathrm{x{1 1 7 3}}\left( t \right) + \mathrm{x{1 2 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 2}}\left( t \right) \ \frac{dx{1 1 7 3}(t)}{dt} =& \alpha1 \mathrm{x{1 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 3}}\left( t \right) + \mathrm{x{1 1 4 1}}\left( t \right) + \mathrm{x{1 1 7 2}}\left( t \right) + \mathrm{x{1 1 7 4}}\left( t \right) + \mathrm{x{1 2 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 3}}\left( t \right) \ \frac{dx{1 1 7 4}(t)}{dt} =& \alpha1 \mathrm{x{1 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 4}}\left( t \right) + \mathrm{x{1 1 4 2}}\left( t \right) + \mathrm{x{1 1 7 3}}\left( t \right) + \mathrm{x{1 1 7 5}}\left( t \right) + \mathrm{x{1 2 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 4}}\left( t \right) \ \frac{dx{1 1 7 5}(t)}{dt} =& \alpha1 \mathrm{x{1 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 5}}\left( t \right) + \mathrm{x{1 1 4 3}}\left( t \right) + \mathrm{x{1 1 7 4}}\left( t \right) + \mathrm{x{1 1 7 6}}\left( t \right) + \mathrm{x{1 2 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 5}}\left( t \right) \ \frac{dx{1 1 7 6}(t)}{dt} =& \alpha1 \mathrm{x{1 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 6}}\left( t \right) + \mathrm{x{1 1 4 4}}\left( t \right) + \mathrm{x{1 1 7 5}}\left( t \right) + \mathrm{x{1 1 7 7}}\left( t \right) + \mathrm{x{1 2 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 6}}\left( t \right) \ \frac{dx{1 1 7 7}(t)}{dt} =& \alpha1 \mathrm{x{1 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 7}}\left( t \right) + \mathrm{x{1 1 4 5}}\left( t \right) + \mathrm{x{1 1 7 6}}\left( t \right) + \mathrm{x{1 1 7 8}}\left( t \right) + \mathrm{x{1 2 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 7}}\left( t \right) \ \frac{dx{1 1 7 8}(t)}{dt} =& \alpha1 \mathrm{x{1 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 8}}\left( t \right) + \mathrm{x{1 1 4 6}}\left( t \right) + \mathrm{x{1 1 7 7}}\left( t \right) + \mathrm{x{1 1 7 9}}\left( t \right) + \mathrm{x{1 2 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 8}}\left( t \right) \ \frac{dx{1 1 7 9}(t)}{dt} =& \alpha1 \mathrm{x{1 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 7 9}}\left( t \right) + \mathrm{x{1 1 4 7}}\left( t \right) + \mathrm{x{1 1 7 8}}\left( t \right) + \mathrm{x{1 1 8 0}}\left( t \right) + \mathrm{x{1 2 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 7 9}}\left( t \right) \ \frac{dx{1 1 8 0}(t)}{dt} =& \alpha1 \mathrm{x{1 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 0}}\left( t \right) + \mathrm{x{1 1 4 8}}\left( t \right) + \mathrm{x{1 1 7 9}}\left( t \right) + \mathrm{x{1 1 8 1}}\left( t \right) + \mathrm{x{1 2 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 0}}\left( t \right) \ \frac{dx{1 1 8 1}(t)}{dt} =& \alpha1 \mathrm{x{1 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 1}}\left( t \right) + \mathrm{x{1 1 4 9}}\left( t \right) + \mathrm{x{1 1 8 0}}\left( t \right) + \mathrm{x{1 1 8 2}}\left( t \right) + \mathrm{x{1 2 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 1}}\left( t \right) \ \frac{dx{1 1 8 2}(t)}{dt} =& \alpha1 \mathrm{x{1 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 2}}\left( t \right) + \mathrm{x{1 1 5 0}}\left( t \right) + \mathrm{x{1 1 8 1}}\left( t \right) + \mathrm{x{1 1 8 3}}\left( t \right) + \mathrm{x{1 2 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 2}}\left( t \right) \ \frac{dx{1 1 8 3}(t)}{dt} =& \alpha1 \mathrm{x{1 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 3}}\left( t \right) + \mathrm{x{1 1 5 1}}\left( t \right) + \mathrm{x{1 1 8 2}}\left( t \right) + \mathrm{x{1 1 8 4}}\left( t \right) + \mathrm{x{1 2 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 3}}\left( t \right) \ \frac{dx{1 1 8 4}(t)}{dt} =& \alpha1 \mathrm{x{1 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 4}}\left( t \right) + \mathrm{x{1 1 5 2}}\left( t \right) + \mathrm{x{1 1 5 3}}\left( t \right) + \mathrm{x{1 1 8 3}}\left( t \right) + \mathrm{x{1 2 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 4}}\left( t \right) \ \frac{dx{1 1 8 5}(t)}{dt} =& \alpha1 \mathrm{x{1 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 5}}\left( t \right) + \mathrm{x{1 1 5 3}}\left( t \right) + \mathrm{x{1 1 8 6}}\left( t \right) + \mathrm{x{1 2 1 6}}\left( t \right) + \mathrm{x{1 2 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 5}}\left( t \right) \ \frac{dx{1 1 8 6}(t)}{dt} =& \alpha1 \mathrm{x{1 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 6}}\left( t \right) + \mathrm{x{1 1 5 4}}\left( t \right) + \mathrm{x{1 1 8 5}}\left( t \right) + \mathrm{x{1 1 8 7}}\left( t \right) + \mathrm{x{1 2 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 6}}\left( t \right) \ \frac{dx{1 1 8 7}(t)}{dt} =& \alpha1 \mathrm{x{1 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 7}}\left( t \right) + \mathrm{x{1 1 5 5}}\left( t \right) + \mathrm{x{1 1 8 6}}\left( t \right) + \mathrm{x{1 1 8 8}}\left( t \right) + \mathrm{x{1 2 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 7}}\left( t \right) \ \frac{dx{1 1 8 8}(t)}{dt} =& \alpha1 \mathrm{x{1 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 8}}\left( t \right) + \mathrm{x{1 1 5 6}}\left( t \right) + \mathrm{x{1 1 8 7}}\left( t \right) + \mathrm{x{1 1 8 9}}\left( t \right) + \mathrm{x{1 2 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 8}}\left( t \right) \ \frac{dx{1 1 8 9}(t)}{dt} =& \alpha1 \mathrm{x{1 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 8 9}}\left( t \right) + \mathrm{x{1 1 5 7}}\left( t \right) + \mathrm{x{1 1 8 8}}\left( t \right) + \mathrm{x{1 1 9 0}}\left( t \right) + \mathrm{x{1 2 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 8 9}}\left( t \right) \ \frac{dx{1 1 9 0}(t)}{dt} =& \alpha1 \mathrm{x{1 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 0}}\left( t \right) + \mathrm{x{1 1 5 8}}\left( t \right) + \mathrm{x{1 1 8 9}}\left( t \right) + \mathrm{x{1 1 9 1}}\left( t \right) + \mathrm{x{1 2 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 0}}\left( t \right) \ \frac{dx{1 1 9 1}(t)}{dt} =& \alpha1 \mathrm{x{1 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 1}}\left( t \right) + \mathrm{x{1 1 5 9}}\left( t \right) + \mathrm{x{1 1 9 0}}\left( t \right) + \mathrm{x{1 1 9 2}}\left( t \right) + \mathrm{x{1 2 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 1}}\left( t \right) \ \frac{dx{1 1 9 2}(t)}{dt} =& \alpha1 \mathrm{x{1 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 2}}\left( t \right) + \mathrm{x{1 1 6 0}}\left( t \right) + \mathrm{x{1 1 9 1}}\left( t \right) + \mathrm{x{1 1 9 3}}\left( t \right) + \mathrm{x{1 2 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 2}}\left( t \right) \ \frac{dx{1 1 9 3}(t)}{dt} =& \alpha1 \mathrm{x{1 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 3}}\left( t \right) + \mathrm{x{1 1 6 1}}\left( t \right) + \mathrm{x{1 1 9 2}}\left( t \right) + \mathrm{x{1 1 9 4}}\left( t \right) + \mathrm{x{1 2 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 3}}\left( t \right) \ \frac{dx{1 1 9 4}(t)}{dt} =& \alpha1 \mathrm{x{1 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 4}}\left( t \right) + \mathrm{x{1 1 6 2}}\left( t \right) + \mathrm{x{1 1 9 3}}\left( t \right) + \mathrm{x{1 1 9 5}}\left( t \right) + \mathrm{x{1 2 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 4}}\left( t \right) \ \frac{dx{1 1 9 5}(t)}{dt} =& \alpha1 \mathrm{x{1 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 5}}\left( t \right) + \mathrm{x{1 1 6 3}}\left( t \right) + \mathrm{x{1 1 9 4}}\left( t \right) + \mathrm{x{1 1 9 6}}\left( t \right) + \mathrm{x{1 2 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 5}}\left( t \right) \ \frac{dx{1 1 9 6}(t)}{dt} =& \alpha1 \mathrm{x{1 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 6}}\left( t \right) + \mathrm{x{1 1 6 4}}\left( t \right) + \mathrm{x{1 1 9 5}}\left( t \right) + \mathrm{x{1 1 9 7}}\left( t \right) + \mathrm{x{1 2 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 6}}\left( t \right) \ \frac{dx{1 1 9 7}(t)}{dt} =& \alpha1 \mathrm{x{1 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 7}}\left( t \right) + \mathrm{x{1 1 6 5}}\left( t \right) + \mathrm{x{1 1 9 6}}\left( t \right) + \mathrm{x{1 1 9 8}}\left( t \right) + \mathrm{x{1 2 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 7}}\left( t \right) \ \frac{dx{1 1 9 8}(t)}{dt} =& \alpha1 \mathrm{x{1 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 8}}\left( t \right) + \mathrm{x{1 1 6 6}}\left( t \right) + \mathrm{x{1 1 9 7}}\left( t \right) + \mathrm{x{1 1 9 9}}\left( t \right) + \mathrm{x{1 2 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 8}}\left( t \right) \ \frac{dx{1 1 9 9}(t)}{dt} =& \alpha1 \mathrm{x{1 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 1 9 9}}\left( t \right) + \mathrm{x{1 1 6 7}}\left( t \right) + \mathrm{x{1 1 9 8}}\left( t \right) + \mathrm{x{1 2 0 0}}\left( t \right) + \mathrm{x{1 2 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 1 9 9}}\left( t \right) \ \frac{dx{1 2 0 0}(t)}{dt} =& \alpha1 \mathrm{x{1 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 0}}\left( t \right) + \mathrm{x{1 1 6 8}}\left( t \right) + \mathrm{x{1 1 9 9}}\left( t \right) + \mathrm{x{1 2 0 1}}\left( t \right) + \mathrm{x{1 2 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 0}}\left( t \right) \ \frac{dx{1 2 0 1}(t)}{dt} =& \alpha1 \mathrm{x{1 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 1}}\left( t \right) + \mathrm{x{1 1 6 9}}\left( t \right) + \mathrm{x{1 2 0 0}}\left( t \right) + \mathrm{x{1 2 0 2}}\left( t \right) + \mathrm{x{1 2 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 1}}\left( t \right) \ \frac{dx{1 2 0 2}(t)}{dt} =& \alpha1 \mathrm{x{1 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 2}}\left( t \right) + \mathrm{x{1 1 7 0}}\left( t \right) + \mathrm{x{1 2 0 1}}\left( t \right) + \mathrm{x{1 2 0 3}}\left( t \right) + \mathrm{x{1 2 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 2}}\left( t \right) \ \frac{dx{1 2 0 3}(t)}{dt} =& \alpha1 \mathrm{x{1 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 3}}\left( t \right) + \mathrm{x{1 1 7 1}}\left( t \right) + \mathrm{x{1 2 0 2}}\left( t \right) + \mathrm{x{1 2 0 4}}\left( t \right) + \mathrm{x{1 2 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 3}}\left( t \right) \ \frac{dx{1 2 0 4}(t)}{dt} =& \alpha1 \mathrm{x{1 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 4}}\left( t \right) + \mathrm{x{1 1 7 2}}\left( t \right) + \mathrm{x{1 2 0 3}}\left( t \right) + \mathrm{x{1 2 0 5}}\left( t \right) + \mathrm{x{1 2 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 4}}\left( t \right) \ \frac{dx{1 2 0 5}(t)}{dt} =& \alpha1 \mathrm{x{1 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 5}}\left( t \right) + \mathrm{x{1 1 7 3}}\left( t \right) + \mathrm{x{1 2 0 4}}\left( t \right) + \mathrm{x{1 2 0 6}}\left( t \right) + \mathrm{x{1 2 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 5}}\left( t \right) \ \frac{dx{1 2 0 6}(t)}{dt} =& \alpha1 \mathrm{x{1 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 6}}\left( t \right) + \mathrm{x{1 1 7 4}}\left( t \right) + \mathrm{x{1 2 0 5}}\left( t \right) + \mathrm{x{1 2 0 7}}\left( t \right) + \mathrm{x{1 2 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 6}}\left( t \right) \ \frac{dx{1 2 0 7}(t)}{dt} =& \alpha1 \mathrm{x{1 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 7}}\left( t \right) + \mathrm{x{1 1 7 5}}\left( t \right) + \mathrm{x{1 2 0 6}}\left( t \right) + \mathrm{x{1 2 0 8}}\left( t \right) + \mathrm{x{1 2 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 7}}\left( t \right) \ \frac{dx{1 2 0 8}(t)}{dt} =& \alpha1 \mathrm{x{1 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 8}}\left( t \right) + \mathrm{x{1 1 7 6}}\left( t \right) + \mathrm{x{1 2 0 7}}\left( t \right) + \mathrm{x{1 2 0 9}}\left( t \right) + \mathrm{x{1 2 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 8}}\left( t \right) \ \frac{dx{1 2 0 9}(t)}{dt} =& \alpha1 \mathrm{x{1 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 0 9}}\left( t \right) + \mathrm{x{1 1 7 7}}\left( t \right) + \mathrm{x{1 2 0 8}}\left( t \right) + \mathrm{x{1 2 1 0}}\left( t \right) + \mathrm{x{1 2 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 0 9}}\left( t \right) \ \frac{dx{1 2 1 0}(t)}{dt} =& \alpha1 \mathrm{x{1 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 0}}\left( t \right) + \mathrm{x{1 1 7 8}}\left( t \right) + \mathrm{x{1 2 0 9}}\left( t \right) + \mathrm{x{1 2 1 1}}\left( t \right) + \mathrm{x{1 2 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 0}}\left( t \right) \ \frac{dx{1 2 1 1}(t)}{dt} =& \alpha1 \mathrm{x{1 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 1}}\left( t \right) + \mathrm{x{1 1 7 9}}\left( t \right) + \mathrm{x{1 2 1 0}}\left( t \right) + \mathrm{x{1 2 1 2}}\left( t \right) + \mathrm{x{1 2 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 1}}\left( t \right) \ \frac{dx{1 2 1 2}(t)}{dt} =& \alpha1 \mathrm{x{1 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 2}}\left( t \right) + \mathrm{x{1 1 8 0}}\left( t \right) + \mathrm{x{1 2 1 1}}\left( t \right) + \mathrm{x{1 2 1 3}}\left( t \right) + \mathrm{x{1 2 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 2}}\left( t \right) \ \frac{dx{1 2 1 3}(t)}{dt} =& \alpha1 \mathrm{x{1 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 3}}\left( t \right) + \mathrm{x{1 1 8 1}}\left( t \right) + \mathrm{x{1 2 1 2}}\left( t \right) + \mathrm{x{1 2 1 4}}\left( t \right) + \mathrm{x{1 2 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 3}}\left( t \right) \ \frac{dx{1 2 1 4}(t)}{dt} =& \alpha1 \mathrm{x{1 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 4}}\left( t \right) + \mathrm{x{1 1 8 2}}\left( t \right) + \mathrm{x{1 2 1 3}}\left( t \right) + \mathrm{x{1 2 1 5}}\left( t \right) + \mathrm{x{1 2 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 4}}\left( t \right) \ \frac{dx{1 2 1 5}(t)}{dt} =& \alpha1 \mathrm{x{1 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 5}}\left( t \right) + \mathrm{x{1 1 8 3}}\left( t \right) + \mathrm{x{1 2 1 4}}\left( t \right) + \mathrm{x{1 2 1 6}}\left( t \right) + \mathrm{x{1 2 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 5}}\left( t \right) \ \frac{dx{1 2 1 6}(t)}{dt} =& \alpha1 \mathrm{x{1 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 6}}\left( t \right) + \mathrm{x{1 1 8 4}}\left( t \right) + \mathrm{x{1 1 8 5}}\left( t \right) + \mathrm{x{1 2 1 5}}\left( t \right) + \mathrm{x{1 2 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 6}}\left( t \right) \ \frac{dx{1 2 1 7}(t)}{dt} =& \alpha1 \mathrm{x{1 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 7}}\left( t \right) + \mathrm{x{1 1 8 5}}\left( t \right) + \mathrm{x{1 2 1 8}}\left( t \right) + \mathrm{x{1 2 4 8}}\left( t \right) + \mathrm{x{1 2 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 7}}\left( t \right) \ \frac{dx{1 2 1 8}(t)}{dt} =& \alpha1 \mathrm{x{1 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 8}}\left( t \right) + \mathrm{x{1 1 8 6}}\left( t \right) + \mathrm{x{1 2 1 7}}\left( t \right) + \mathrm{x{1 2 1 9}}\left( t \right) + \mathrm{x{1 2 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 8}}\left( t \right) \ \frac{dx{1 2 1 9}(t)}{dt} =& \alpha1 \mathrm{x{1 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 1 9}}\left( t \right) + \mathrm{x{1 1 8 7}}\left( t \right) + \mathrm{x{1 2 1 8}}\left( t \right) + \mathrm{x{1 2 2 0}}\left( t \right) + \mathrm{x{1 2 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 1 9}}\left( t \right) \ \frac{dx{1 2 2 0}(t)}{dt} =& \alpha1 \mathrm{x{1 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 0}}\left( t \right) + \mathrm{x{1 1 8 8}}\left( t \right) + \mathrm{x{1 2 1 9}}\left( t \right) + \mathrm{x{1 2 2 1}}\left( t \right) + \mathrm{x{1 2 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 0}}\left( t \right) \ \frac{dx{1 2 2 1}(t)}{dt} =& \alpha1 \mathrm{x{1 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 1}}\left( t \right) + \mathrm{x{1 1 8 9}}\left( t \right) + \mathrm{x{1 2 2 0}}\left( t \right) + \mathrm{x{1 2 2 2}}\left( t \right) + \mathrm{x{1 2 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 1}}\left( t \right) \ \frac{dx{1 2 2 2}(t)}{dt} =& \alpha1 \mathrm{x{1 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 2}}\left( t \right) + \mathrm{x{1 1 9 0}}\left( t \right) + \mathrm{x{1 2 2 1}}\left( t \right) + \mathrm{x{1 2 2 3}}\left( t \right) + \mathrm{x{1 2 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 2}}\left( t \right) \ \frac{dx{1 2 2 3}(t)}{dt} =& \alpha1 \mathrm{x{1 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 3}}\left( t \right) + \mathrm{x{1 1 9 1}}\left( t \right) + \mathrm{x{1 2 2 2}}\left( t \right) + \mathrm{x{1 2 2 4}}\left( t \right) + \mathrm{x{1 2 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 3}}\left( t \right) \ \frac{dx{1 2 2 4}(t)}{dt} =& \alpha1 \mathrm{x{2 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 4}}\left( t \right) + \mathrm{x{1 1 9 2}}\left( t \right) + \mathrm{x{1 2 2 3}}\left( t \right) + \mathrm{x{1 2 2 5}}\left( t \right) + \mathrm{x{1 2 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 4}}\left( t \right) \ \frac{dx{1 2 2 5}(t)}{dt} =& \alpha1 \mathrm{x{2 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 5}}\left( t \right) + \mathrm{x{1 1 9 3}}\left( t \right) + \mathrm{x{1 2 2 4}}\left( t \right) + \mathrm{x{1 2 2 6}}\left( t \right) + \mathrm{x{1 2 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 5}}\left( t \right) \ \frac{dx{1 2 2 6}(t)}{dt} =& \alpha1 \mathrm{x{2 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 6}}\left( t \right) + \mathrm{x{1 1 9 4}}\left( t \right) + \mathrm{x{1 2 2 5}}\left( t \right) + \mathrm{x{1 2 2 7}}\left( t \right) + \mathrm{x{1 2 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 6}}\left( t \right) \ \frac{dx{1 2 2 7}(t)}{dt} =& \alpha1 \mathrm{x{2 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 7}}\left( t \right) + \mathrm{x{1 1 9 5}}\left( t \right) + \mathrm{x{1 2 2 6}}\left( t \right) + \mathrm{x{1 2 2 8}}\left( t \right) + \mathrm{x{1 2 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 7}}\left( t \right) \ \frac{dx{1 2 2 8}(t)}{dt} =& \alpha1 \mathrm{x{2 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 8}}\left( t \right) + \mathrm{x{1 1 9 6}}\left( t \right) + \mathrm{x{1 2 2 7}}\left( t \right) + \mathrm{x{1 2 2 9}}\left( t \right) + \mathrm{x{1 2 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 8}}\left( t \right) \ \frac{dx{1 2 2 9}(t)}{dt} =& \alpha1 \mathrm{x{2 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 2 9}}\left( t \right) + \mathrm{x{1 1 9 7}}\left( t \right) + \mathrm{x{1 2 2 8}}\left( t \right) + \mathrm{x{1 2 3 0}}\left( t \right) + \mathrm{x{1 2 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 2 9}}\left( t \right) \ \frac{dx{1 2 3 0}(t)}{dt} =& \alpha1 \mathrm{x{2 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 0}}\left( t \right) + \mathrm{x{1 1 9 8}}\left( t \right) + \mathrm{x{1 2 2 9}}\left( t \right) + \mathrm{x{1 2 3 1}}\left( t \right) + \mathrm{x{1 2 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 0}}\left( t \right) \ \frac{dx{1 2 3 1}(t)}{dt} =& \alpha1 \mathrm{x{2 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 1}}\left( t \right) + \mathrm{x{1 1 9 9}}\left( t \right) + \mathrm{x{1 2 3 0}}\left( t \right) + \mathrm{x{1 2 3 2}}\left( t \right) + \mathrm{x{1 2 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 1}}\left( t \right) \ \frac{dx{1 2 3 2}(t)}{dt} =& \alpha1 \mathrm{x{2 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 2}}\left( t \right) + \mathrm{x{1 2 0 0}}\left( t \right) + \mathrm{x{1 2 3 1}}\left( t \right) + \mathrm{x{1 2 3 3}}\left( t \right) + \mathrm{x{1 2 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 2}}\left( t \right) \ \frac{dx{1 2 3 3}(t)}{dt} =& \alpha1 \mathrm{x{2 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 3}}\left( t \right) + \mathrm{x{1 2 0 1}}\left( t \right) + \mathrm{x{1 2 3 2}}\left( t \right) + \mathrm{x{1 2 3 4}}\left( t \right) + \mathrm{x{1 2 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 3}}\left( t \right) \ \frac{dx{1 2 3 4}(t)}{dt} =& \alpha1 \mathrm{x{2 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 4}}\left( t \right) + \mathrm{x{1 2 0 2}}\left( t \right) + \mathrm{x{1 2 3 3}}\left( t \right) + \mathrm{x{1 2 3 5}}\left( t \right) + \mathrm{x{1 2 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 4}}\left( t \right) \ \frac{dx{1 2 3 5}(t)}{dt} =& \alpha1 \mathrm{x{2 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 5}}\left( t \right) + \mathrm{x{1 2 0 3}}\left( t \right) + \mathrm{x{1 2 3 4}}\left( t \right) + \mathrm{x{1 2 3 6}}\left( t \right) + \mathrm{x{1 2 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 5}}\left( t \right) \ \frac{dx{1 2 3 6}(t)}{dt} =& \alpha1 \mathrm{x{2 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 6}}\left( t \right) + \mathrm{x{1 2 0 4}}\left( t \right) + \mathrm{x{1 2 3 5}}\left( t \right) + \mathrm{x{1 2 3 7}}\left( t \right) + \mathrm{x{1 2 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 6}}\left( t \right) \ \frac{dx{1 2 3 7}(t)}{dt} =& \alpha1 \mathrm{x{2 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 7}}\left( t \right) + \mathrm{x{1 2 0 5}}\left( t \right) + \mathrm{x{1 2 3 6}}\left( t \right) + \mathrm{x{1 2 3 8}}\left( t \right) + \mathrm{x{1 2 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 7}}\left( t \right) \ \frac{dx{1 2 3 8}(t)}{dt} =& \alpha1 \mathrm{x{2 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 8}}\left( t \right) + \mathrm{x{1 2 0 6}}\left( t \right) + \mathrm{x{1 2 3 7}}\left( t \right) + \mathrm{x{1 2 3 9}}\left( t \right) + \mathrm{x{1 2 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 8}}\left( t \right) \ \frac{dx{1 2 3 9}(t)}{dt} =& \alpha1 \mathrm{x{2 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 3 9}}\left( t \right) + \mathrm{x{1 2 0 7}}\left( t \right) + \mathrm{x{1 2 3 8}}\left( t \right) + \mathrm{x{1 2 4 0}}\left( t \right) + \mathrm{x{1 2 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 3 9}}\left( t \right) \ \frac{dx{1 2 4 0}(t)}{dt} =& \alpha1 \mathrm{x{2 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 0}}\left( t \right) + \mathrm{x{1 2 0 8}}\left( t \right) + \mathrm{x{1 2 3 9}}\left( t \right) + \mathrm{x{1 2 4 1}}\left( t \right) + \mathrm{x{1 2 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 0}}\left( t \right) \ \frac{dx{1 2 4 1}(t)}{dt} =& \alpha1 \mathrm{x{2 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 1}}\left( t \right) + \mathrm{x{1 2 0 9}}\left( t \right) + \mathrm{x{1 2 4 0}}\left( t \right) + \mathrm{x{1 2 4 2}}\left( t \right) + \mathrm{x{1 2 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 1}}\left( t \right) \ \frac{dx{1 2 4 2}(t)}{dt} =& \alpha1 \mathrm{x{2 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 2}}\left( t \right) + \mathrm{x{1 2 1 0}}\left( t \right) + \mathrm{x{1 2 4 1}}\left( t \right) + \mathrm{x{1 2 4 3}}\left( t \right) + \mathrm{x{1 2 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 2}}\left( t \right) \ \frac{dx{1 2 4 3}(t)}{dt} =& \alpha1 \mathrm{x{2 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 3}}\left( t \right) + \mathrm{x{1 2 1 1}}\left( t \right) + \mathrm{x{1 2 4 2}}\left( t \right) + \mathrm{x{1 2 4 4}}\left( t \right) + \mathrm{x{1 2 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 3}}\left( t \right) \ \frac{dx{1 2 4 4}(t)}{dt} =& \alpha1 \mathrm{x{2 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 4}}\left( t \right) + \mathrm{x{1 2 1 2}}\left( t \right) + \mathrm{x{1 2 4 3}}\left( t \right) + \mathrm{x{1 2 4 5}}\left( t \right) + \mathrm{x{1 2 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 4}}\left( t \right) \ \frac{dx{1 2 4 5}(t)}{dt} =& \alpha1 \mathrm{x{2 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 5}}\left( t \right) + \mathrm{x{1 2 1 3}}\left( t \right) + \mathrm{x{1 2 4 4}}\left( t \right) + \mathrm{x{1 2 4 6}}\left( t \right) + \mathrm{x{1 2 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 5}}\left( t \right) \ \frac{dx{1 2 4 6}(t)}{dt} =& \alpha1 \mathrm{x{2 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 6}}\left( t \right) + \mathrm{x{1 2 1 4}}\left( t \right) + \mathrm{x{1 2 4 5}}\left( t \right) + \mathrm{x{1 2 4 7}}\left( t \right) + \mathrm{x{1 2 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 6}}\left( t \right) \ \frac{dx{1 2 4 7}(t)}{dt} =& \alpha1 \mathrm{x{2 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 7}}\left( t \right) + \mathrm{x{1 2 1 5}}\left( t \right) + \mathrm{x{1 2 4 6}}\left( t \right) + \mathrm{x{1 2 4 8}}\left( t \right) + \mathrm{x{1 2 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 7}}\left( t \right) \ \frac{dx{1 2 4 8}(t)}{dt} =& \alpha1 \mathrm{x{2 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 8}}\left( t \right) + \mathrm{x{1 2 1 6}}\left( t \right) + \mathrm{x{1 2 1 7}}\left( t \right) + \mathrm{x{1 2 4 7}}\left( t \right) + \mathrm{x{1 2 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 8}}\left( t \right) \ \frac{dx{1 2 4 9}(t)}{dt} =& \alpha1 \mathrm{x{2 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 4 9}}\left( t \right) + \mathrm{x{1 2 1 7}}\left( t \right) + \mathrm{x{1 2 5 0}}\left( t \right) + \mathrm{x{1 2 8 0}}\left( t \right) + \mathrm{x{1 2 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 4 9}}\left( t \right) \ \frac{dx{1 2 5 0}(t)}{dt} =& \alpha1 \mathrm{x{2 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 0}}\left( t \right) + \mathrm{x{1 2 1 8}}\left( t \right) + \mathrm{x{1 2 4 9}}\left( t \right) + \mathrm{x{1 2 5 1}}\left( t \right) + \mathrm{x{1 2 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 0}}\left( t \right) \ \frac{dx{1 2 5 1}(t)}{dt} =& \alpha1 \mathrm{x{2 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 1}}\left( t \right) + \mathrm{x{1 2 1 9}}\left( t \right) + \mathrm{x{1 2 5 0}}\left( t \right) + \mathrm{x{1 2 5 2}}\left( t \right) + \mathrm{x{1 2 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 1}}\left( t \right) \ \frac{dx{1 2 5 2}(t)}{dt} =& \alpha1 \mathrm{x{2 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 2}}\left( t \right) + \mathrm{x{1 2 2 0}}\left( t \right) + \mathrm{x{1 2 5 1}}\left( t \right) + \mathrm{x{1 2 5 3}}\left( t \right) + \mathrm{x{1 2 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 2}}\left( t \right) \ \frac{dx{1 2 5 3}(t)}{dt} =& \alpha1 \mathrm{x{2 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 3}}\left( t \right) + \mathrm{x{1 2 2 1}}\left( t \right) + \mathrm{x{1 2 5 2}}\left( t \right) + \mathrm{x{1 2 5 4}}\left( t \right) + \mathrm{x{1 2 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 3}}\left( t \right) \ \frac{dx{1 2 5 4}(t)}{dt} =& \alpha1 \mathrm{x{2 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 4}}\left( t \right) + \mathrm{x{1 2 2 2}}\left( t \right) + \mathrm{x{1 2 5 3}}\left( t \right) + \mathrm{x{1 2 5 5}}\left( t \right) + \mathrm{x{1 2 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 4}}\left( t \right) \ \frac{dx{1 2 5 5}(t)}{dt} =& \alpha1 \mathrm{x{2 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 5}}\left( t \right) + \mathrm{x{1 2 2 3}}\left( t \right) + \mathrm{x{1 2 5 4}}\left( t \right) + \mathrm{x{1 2 5 6}}\left( t \right) + \mathrm{x{1 2 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 5}}\left( t \right) \ \frac{dx{1 2 5 6}(t)}{dt} =& \alpha1 \mathrm{x{2 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 6}}\left( t \right) + \mathrm{x{1 2 2 4}}\left( t \right) + \mathrm{x{1 2 5 5}}\left( t \right) + \mathrm{x{1 2 5 7}}\left( t \right) + \mathrm{x{1 2 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 6}}\left( t \right) \ \frac{dx{1 2 5 7}(t)}{dt} =& \alpha1 \mathrm{x{2 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 7}}\left( t \right) + \mathrm{x{1 2 2 5}}\left( t \right) + \mathrm{x{1 2 5 6}}\left( t \right) + \mathrm{x{1 2 5 8}}\left( t \right) + \mathrm{x{1 2 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 7}}\left( t \right) \ \frac{dx{1 2 5 8}(t)}{dt} =& \alpha1 \mathrm{x{2 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 8}}\left( t \right) + \mathrm{x{1 2 2 6}}\left( t \right) + \mathrm{x{1 2 5 7}}\left( t \right) + \mathrm{x{1 2 5 9}}\left( t \right) + \mathrm{x{1 2 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 8}}\left( t \right) \ \frac{dx{1 2 5 9}(t)}{dt} =& \alpha1 \mathrm{x{2 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 5 9}}\left( t \right) + \mathrm{x{1 2 2 7}}\left( t \right) + \mathrm{x{1 2 5 8}}\left( t \right) + \mathrm{x{1 2 6 0}}\left( t \right) + \mathrm{x{1 2 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 5 9}}\left( t \right) \ \frac{dx{1 2 6 0}(t)}{dt} =& \alpha1 \mathrm{x{2 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 0}}\left( t \right) + \mathrm{x{1 2 2 8}}\left( t \right) + \mathrm{x{1 2 5 9}}\left( t \right) + \mathrm{x{1 2 6 1}}\left( t \right) + \mathrm{x{1 2 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 0}}\left( t \right) \ \frac{dx{1 2 6 1}(t)}{dt} =& \alpha1 \mathrm{x{2 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 1}}\left( t \right) + \mathrm{x{1 2 2 9}}\left( t \right) + \mathrm{x{1 2 6 0}}\left( t \right) + \mathrm{x{1 2 6 2}}\left( t \right) + \mathrm{x{1 2 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 1}}\left( t \right) \ \frac{dx{1 2 6 2}(t)}{dt} =& \alpha1 \mathrm{x{2 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 2}}\left( t \right) + \mathrm{x{1 2 3 0}}\left( t \right) + \mathrm{x{1 2 6 1}}\left( t \right) + \mathrm{x{1 2 6 3}}\left( t \right) + \mathrm{x{1 2 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 2}}\left( t \right) \ \frac{dx{1 2 6 3}(t)}{dt} =& \alpha1 \mathrm{x{2 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 3}}\left( t \right) + \mathrm{x{1 2 3 1}}\left( t \right) + \mathrm{x{1 2 6 2}}\left( t \right) + \mathrm{x{1 2 6 4}}\left( t \right) + \mathrm{x{1 2 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 3}}\left( t \right) \ \frac{dx{1 2 6 4}(t)}{dt} =& \alpha1 \mathrm{x{2 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 4}}\left( t \right) + \mathrm{x{1 2 3 2}}\left( t \right) + \mathrm{x{1 2 6 3}}\left( t \right) + \mathrm{x{1 2 6 5}}\left( t \right) + \mathrm{x{1 2 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 4}}\left( t \right) \ \frac{dx{1 2 6 5}(t)}{dt} =& \alpha1 \mathrm{x{2 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 5}}\left( t \right) + \mathrm{x{1 2 3 3}}\left( t \right) + \mathrm{x{1 2 6 4}}\left( t \right) + \mathrm{x{1 2 6 6}}\left( t \right) + \mathrm{x{1 2 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 5}}\left( t \right) \ \frac{dx{1 2 6 6}(t)}{dt} =& \alpha1 \mathrm{x{2 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 6}}\left( t \right) + \mathrm{x{1 2 3 4}}\left( t \right) + \mathrm{x{1 2 6 5}}\left( t \right) + \mathrm{x{1 2 6 7}}\left( t \right) + \mathrm{x{1 2 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 6}}\left( t \right) \ \frac{dx{1 2 6 7}(t)}{dt} =& \alpha1 \mathrm{x{2 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 7}}\left( t \right) + \mathrm{x{1 2 3 5}}\left( t \right) + \mathrm{x{1 2 6 6}}\left( t \right) + \mathrm{x{1 2 6 8}}\left( t \right) + \mathrm{x{1 2 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 7}}\left( t \right) \ \frac{dx{1 2 6 8}(t)}{dt} =& \alpha1 \mathrm{x{2 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 8}}\left( t \right) + \mathrm{x{1 2 3 6}}\left( t \right) + \mathrm{x{1 2 6 7}}\left( t \right) + \mathrm{x{1 2 6 9}}\left( t \right) + \mathrm{x{1 3 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 8}}\left( t \right) \ \frac{dx{1 2 6 9}(t)}{dt} =& \alpha1 \mathrm{x{2 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 6 9}}\left( t \right) + \mathrm{x{1 2 3 7}}\left( t \right) + \mathrm{x{1 2 6 8}}\left( t \right) + \mathrm{x{1 2 7 0}}\left( t \right) + \mathrm{x{1 3 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 6 9}}\left( t \right) \ \frac{dx{1 2 7 0}(t)}{dt} =& \alpha1 \mathrm{x{2 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 0}}\left( t \right) + \mathrm{x{1 2 3 8}}\left( t \right) + \mathrm{x{1 2 6 9}}\left( t \right) + \mathrm{x{1 2 7 1}}\left( t \right) + \mathrm{x{1 3 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 0}}\left( t \right) \ \frac{dx{1 2 7 1}(t)}{dt} =& \alpha1 \mathrm{x{2 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 1}}\left( t \right) + \mathrm{x{1 2 3 9}}\left( t \right) + \mathrm{x{1 2 7 0}}\left( t \right) + \mathrm{x{1 2 7 2}}\left( t \right) + \mathrm{x{1 3 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 1}}\left( t \right) \ \frac{dx{1 2 7 2}(t)}{dt} =& \alpha1 \mathrm{x{2 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 2}}\left( t \right) + \mathrm{x{1 2 4 0}}\left( t \right) + \mathrm{x{1 2 7 1}}\left( t \right) + \mathrm{x{1 2 7 3}}\left( t \right) + \mathrm{x{1 3 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 2}}\left( t \right) \ \frac{dx{1 2 7 3}(t)}{dt} =& \alpha1 \mathrm{x{2 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 3}}\left( t \right) + \mathrm{x{1 2 4 1}}\left( t \right) + \mathrm{x{1 2 7 2}}\left( t \right) + \mathrm{x{1 2 7 4}}\left( t \right) + \mathrm{x{1 3 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 3}}\left( t \right) \ \frac{dx{1 2 7 4}(t)}{dt} =& \alpha1 \mathrm{x{2 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 4}}\left( t \right) + \mathrm{x{1 2 4 2}}\left( t \right) + \mathrm{x{1 2 7 3}}\left( t \right) + \mathrm{x{1 2 7 5}}\left( t \right) + \mathrm{x{1 3 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 4}}\left( t \right) \ \frac{dx{1 2 7 5}(t)}{dt} =& \alpha1 \mathrm{x{2 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 5}}\left( t \right) + \mathrm{x{1 2 4 3}}\left( t \right) + \mathrm{x{1 2 7 4}}\left( t \right) + \mathrm{x{1 2 7 6}}\left( t \right) + \mathrm{x{1 3 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 5}}\left( t \right) \ \frac{dx{1 2 7 6}(t)}{dt} =& \alpha1 \mathrm{x{2 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 6}}\left( t \right) + \mathrm{x{1 2 4 4}}\left( t \right) + \mathrm{x{1 2 7 5}}\left( t \right) + \mathrm{x{1 2 7 7}}\left( t \right) + \mathrm{x{1 3 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 6}}\left( t \right) \ \frac{dx{1 2 7 7}(t)}{dt} =& \alpha1 \mathrm{x{2 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 7}}\left( t \right) + \mathrm{x{1 2 4 5}}\left( t \right) + \mathrm{x{1 2 7 6}}\left( t \right) + \mathrm{x{1 2 7 8}}\left( t \right) + \mathrm{x{1 3 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 7}}\left( t \right) \ \frac{dx{1 2 7 8}(t)}{dt} =& \alpha1 \mathrm{x{2 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 8}}\left( t \right) + \mathrm{x{1 2 4 6}}\left( t \right) + \mathrm{x{1 2 7 7}}\left( t \right) + \mathrm{x{1 2 7 9}}\left( t \right) + \mathrm{x{1 3 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 8}}\left( t \right) \ \frac{dx{1 2 7 9}(t)}{dt} =& \alpha1 \mathrm{x{2 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 7 9}}\left( t \right) + \mathrm{x{1 2 4 7}}\left( t \right) + \mathrm{x{1 2 7 8}}\left( t \right) + \mathrm{x{1 2 8 0}}\left( t \right) + \mathrm{x{1 3 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 7 9}}\left( t \right) \ \frac{dx{1 2 8 0}(t)}{dt} =& \alpha1 \mathrm{x{2 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 0}}\left( t \right) + \mathrm{x{1 2 4 8}}\left( t \right) + \mathrm{x{1 2 4 9}}\left( t \right) + \mathrm{x{1 2 7 9}}\left( t \right) + \mathrm{x{1 3 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 0}}\left( t \right) \ \frac{dx{1 2 8 1}(t)}{dt} =& \alpha1 \mathrm{x{2 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 1}}\left( t \right) + \mathrm{x{1 2 4 9}}\left( t \right) + \mathrm{x{1 2 8 2}}\left( t \right) + \mathrm{x{1 3 1 2}}\left( t \right) + \mathrm{x{1 3 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 1}}\left( t \right) \ \frac{dx{1 2 8 2}(t)}{dt} =& \alpha1 \mathrm{x{2 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 2}}\left( t \right) + \mathrm{x{1 2 5 0}}\left( t \right) + \mathrm{x{1 2 8 1}}\left( t \right) + \mathrm{x{1 2 8 3}}\left( t \right) + \mathrm{x{1 3 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 2}}\left( t \right) \ \frac{dx{1 2 8 3}(t)}{dt} =& \alpha1 \mathrm{x{2 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 3}}\left( t \right) + \mathrm{x{1 2 5 1}}\left( t \right) + \mathrm{x{1 2 8 2}}\left( t \right) + \mathrm{x{1 2 8 4}}\left( t \right) + \mathrm{x{1 3 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 3}}\left( t \right) \ \frac{dx{1 2 8 4}(t)}{dt} =& \alpha1 \mathrm{x{2 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 4}}\left( t \right) + \mathrm{x{1 2 5 2}}\left( t \right) + \mathrm{x{1 2 8 3}}\left( t \right) + \mathrm{x{1 2 8 5}}\left( t \right) + \mathrm{x{1 3 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 4}}\left( t \right) \ \frac{dx{1 2 8 5}(t)}{dt} =& \alpha1 \mathrm{x{2 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 5}}\left( t \right) + \mathrm{x{1 2 5 3}}\left( t \right) + \mathrm{x{1 2 8 4}}\left( t \right) + \mathrm{x{1 2 8 6}}\left( t \right) + \mathrm{x{1 3 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 5}}\left( t \right) \ \frac{dx{1 2 8 6}(t)}{dt} =& \alpha1 \mathrm{x{2 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 6}}\left( t \right) + \mathrm{x{1 2 5 4}}\left( t \right) + \mathrm{x{1 2 8 5}}\left( t \right) + \mathrm{x{1 2 8 7}}\left( t \right) + \mathrm{x{1 3 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 6}}\left( t \right) \ \frac{dx{1 2 8 7}(t)}{dt} =& \alpha1 \mathrm{x{2 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 7}}\left( t \right) + \mathrm{x{1 2 5 5}}\left( t \right) + \mathrm{x{1 2 8 6}}\left( t \right) + \mathrm{x{1 2 8 8}}\left( t \right) + \mathrm{x{1 3 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 7}}\left( t \right) \ \frac{dx{1 2 8 8}(t)}{dt} =& \alpha1 \mathrm{x{2 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 8}}\left( t \right) + \mathrm{x{1 2 5 6}}\left( t \right) + \mathrm{x{1 2 8 7}}\left( t \right) + \mathrm{x{1 2 8 9}}\left( t \right) + \mathrm{x{1 3 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 8}}\left( t \right) \ \frac{dx{1 2 8 9}(t)}{dt} =& \alpha1 \mathrm{x{2 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 8 9}}\left( t \right) + \mathrm{x{1 2 5 7}}\left( t \right) + \mathrm{x{1 2 8 8}}\left( t \right) + \mathrm{x{1 2 9 0}}\left( t \right) + \mathrm{x{1 3 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 8 9}}\left( t \right) \ \frac{dx{1 2 9 0}(t)}{dt} =& \alpha1 \mathrm{x{2 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 0}}\left( t \right) + \mathrm{x{1 2 5 8}}\left( t \right) + \mathrm{x{1 2 8 9}}\left( t \right) + \mathrm{x{1 2 9 1}}\left( t \right) + \mathrm{x{1 3 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 0}}\left( t \right) \ \frac{dx{1 2 9 1}(t)}{dt} =& \alpha1 \mathrm{x{2 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 1}}\left( t \right) + \mathrm{x{1 2 5 9}}\left( t \right) + \mathrm{x{1 2 9 0}}\left( t \right) + \mathrm{x{1 2 9 2}}\left( t \right) + \mathrm{x{1 3 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 1}}\left( t \right) \ \frac{dx{1 2 9 2}(t)}{dt} =& \alpha1 \mathrm{x{2 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 2}}\left( t \right) + \mathrm{x{1 2 6 0}}\left( t \right) + \mathrm{x{1 2 9 1}}\left( t \right) + \mathrm{x{1 2 9 3}}\left( t \right) + \mathrm{x{1 3 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 2}}\left( t \right) \ \frac{dx{1 2 9 3}(t)}{dt} =& \alpha1 \mathrm{x{2 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 3}}\left( t \right) + \mathrm{x{1 2 6 1}}\left( t \right) + \mathrm{x{1 2 9 2}}\left( t \right) + \mathrm{x{1 2 9 4}}\left( t \right) + \mathrm{x{1 3 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 3}}\left( t \right) \ \frac{dx{1 2 9 4}(t)}{dt} =& \alpha1 \mathrm{x{2 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 4}}\left( t \right) + \mathrm{x{1 2 6 2}}\left( t \right) + \mathrm{x{1 2 9 3}}\left( t \right) + \mathrm{x{1 2 9 5}}\left( t \right) + \mathrm{x{1 3 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 4}}\left( t \right) \ \frac{dx{1 2 9 5}(t)}{dt} =& \alpha1 \mathrm{x{2 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 5}}\left( t \right) + \mathrm{x{1 2 6 3}}\left( t \right) + \mathrm{x{1 2 9 4}}\left( t \right) + \mathrm{x{1 2 9 6}}\left( t \right) + \mathrm{x{1 3 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 5}}\left( t \right) \ \frac{dx{1 2 9 6}(t)}{dt} =& \alpha1 \mathrm{x{2 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 6}}\left( t \right) + \mathrm{x{1 2 6 4}}\left( t \right) + \mathrm{x{1 2 9 5}}\left( t \right) + \mathrm{x{1 2 9 7}}\left( t \right) + \mathrm{x{1 3 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 6}}\left( t \right) \ \frac{dx{1 2 9 7}(t)}{dt} =& \alpha1 \mathrm{x{2 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 7}}\left( t \right) + \mathrm{x{1 2 6 5}}\left( t \right) + \mathrm{x{1 2 9 6}}\left( t \right) + \mathrm{x{1 2 9 8}}\left( t \right) + \mathrm{x{1 3 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 7}}\left( t \right) \ \frac{dx{1 2 9 8}(t)}{dt} =& \alpha1 \mathrm{x{2 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 8}}\left( t \right) + \mathrm{x{1 2 6 6}}\left( t \right) + \mathrm{x{1 2 9 7}}\left( t \right) + \mathrm{x{1 2 9 9}}\left( t \right) + \mathrm{x{1 3 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 8}}\left( t \right) \ \frac{dx{1 2 9 9}(t)}{dt} =& \alpha1 \mathrm{x{2 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 2 9 9}}\left( t \right) + \mathrm{x{1 2 6 7}}\left( t \right) + \mathrm{x{1 2 9 8}}\left( t \right) + \mathrm{x{1 3 0 0}}\left( t \right) + \mathrm{x{1 3 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 2 9 9}}\left( t \right) \ \frac{dx{1 3 0 0}(t)}{dt} =& \alpha1 \mathrm{x{2 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 0}}\left( t \right) + \mathrm{x{1 2 6 8}}\left( t \right) + \mathrm{x{1 2 9 9}}\left( t \right) + \mathrm{x{1 3 0 1}}\left( t \right) + \mathrm{x{1 3 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 0}}\left( t \right) \ \frac{dx{1 3 0 1}(t)}{dt} =& \alpha1 \mathrm{x{2 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 1}}\left( t \right) + \mathrm{x{1 2 6 9}}\left( t \right) + \mathrm{x{1 3 0 0}}\left( t \right) + \mathrm{x{1 3 0 2}}\left( t \right) + \mathrm{x{1 3 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 1}}\left( t \right) \ \frac{dx{1 3 0 2}(t)}{dt} =& \alpha1 \mathrm{x{2 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 2}}\left( t \right) + \mathrm{x{1 2 7 0}}\left( t \right) + \mathrm{x{1 3 0 1}}\left( t \right) + \mathrm{x{1 3 0 3}}\left( t \right) + \mathrm{x{1 3 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 2}}\left( t \right) \ \frac{dx{1 3 0 3}(t)}{dt} =& \alpha1 \mathrm{x{2 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 3}}\left( t \right) + \mathrm{x{1 2 7 1}}\left( t \right) + \mathrm{x{1 3 0 2}}\left( t \right) + \mathrm{x{1 3 0 4}}\left( t \right) + \mathrm{x{1 3 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 3}}\left( t \right) \ \frac{dx{1 3 0 4}(t)}{dt} =& \alpha1 \mathrm{x{2 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 4}}\left( t \right) + \mathrm{x{1 2 7 2}}\left( t \right) + \mathrm{x{1 3 0 3}}\left( t \right) + \mathrm{x{1 3 0 5}}\left( t \right) + \mathrm{x{1 3 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 4}}\left( t \right) \ \frac{dx{1 3 0 5}(t)}{dt} =& \alpha1 \mathrm{x{2 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 5}}\left( t \right) + \mathrm{x{1 2 7 3}}\left( t \right) + \mathrm{x{1 3 0 4}}\left( t \right) + \mathrm{x{1 3 0 6}}\left( t \right) + \mathrm{x{1 3 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 5}}\left( t \right) \ \frac{dx{1 3 0 6}(t)}{dt} =& \alpha1 \mathrm{x{2 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 6}}\left( t \right) + \mathrm{x{1 2 7 4}}\left( t \right) + \mathrm{x{1 3 0 5}}\left( t \right) + \mathrm{x{1 3 0 7}}\left( t \right) + \mathrm{x{1 3 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 6}}\left( t \right) \ \frac{dx{1 3 0 7}(t)}{dt} =& \alpha1 \mathrm{x{2 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 7}}\left( t \right) + \mathrm{x{1 2 7 5}}\left( t \right) + \mathrm{x{1 3 0 6}}\left( t \right) + \mathrm{x{1 3 0 8}}\left( t \right) + \mathrm{x{1 3 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 7}}\left( t \right) \ \frac{dx{1 3 0 8}(t)}{dt} =& \alpha1 \mathrm{x{2 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 8}}\left( t \right) + \mathrm{x{1 2 7 6}}\left( t \right) + \mathrm{x{1 3 0 7}}\left( t \right) + \mathrm{x{1 3 0 9}}\left( t \right) + \mathrm{x{1 3 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 8}}\left( t \right) \ \frac{dx{1 3 0 9}(t)}{dt} =& \alpha1 \mathrm{x{2 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 0 9}}\left( t \right) + \mathrm{x{1 2 7 7}}\left( t \right) + \mathrm{x{1 3 0 8}}\left( t \right) + \mathrm{x{1 3 1 0}}\left( t \right) + \mathrm{x{1 3 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 0 9}}\left( t \right) \ \frac{dx{1 3 1 0}(t)}{dt} =& \alpha1 \mathrm{x{2 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 0}}\left( t \right) + \mathrm{x{1 2 7 8}}\left( t \right) + \mathrm{x{1 3 0 9}}\left( t \right) + \mathrm{x{1 3 1 1}}\left( t \right) + \mathrm{x{1 3 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 0}}\left( t \right) \ \frac{dx{1 3 1 1}(t)}{dt} =& \alpha1 \mathrm{x{2 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 1}}\left( t \right) + \mathrm{x{1 2 7 9}}\left( t \right) + \mathrm{x{1 3 1 0}}\left( t \right) + \mathrm{x{1 3 1 2}}\left( t \right) + \mathrm{x{1 3 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 1}}\left( t \right) \ \frac{dx{1 3 1 2}(t)}{dt} =& \alpha1 \mathrm{x{2 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 2}}\left( t \right) + \mathrm{x{1 2 8 0}}\left( t \right) + \mathrm{x{1 2 8 1}}\left( t \right) + \mathrm{x{1 3 1 1}}\left( t \right) + \mathrm{x{1 3 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 2}}\left( t \right) \ \frac{dx{1 3 1 3}(t)}{dt} =& \alpha1 \mathrm{x{2 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 3}}\left( t \right) + \mathrm{x{1 2 8 1}}\left( t \right) + \mathrm{x{1 3 1 4}}\left( t \right) + \mathrm{x{1 3 4 4}}\left( t \right) + \mathrm{x{1 3 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 3}}\left( t \right) \ \frac{dx{1 3 1 4}(t)}{dt} =& \alpha1 \mathrm{x{2 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 4}}\left( t \right) + \mathrm{x{1 2 8 2}}\left( t \right) + \mathrm{x{1 3 1 3}}\left( t \right) + \mathrm{x{1 3 1 5}}\left( t \right) + \mathrm{x{1 3 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 4}}\left( t \right) \ \frac{dx{1 3 1 5}(t)}{dt} =& \alpha1 \mathrm{x{2 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 5}}\left( t \right) + \mathrm{x{1 2 8 3}}\left( t \right) + \mathrm{x{1 3 1 4}}\left( t \right) + \mathrm{x{1 3 1 6}}\left( t \right) + \mathrm{x{1 3 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 5}}\left( t \right) \ \frac{dx{1 3 1 6}(t)}{dt} =& \alpha1 \mathrm{x{2 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 6}}\left( t \right) + \mathrm{x{1 2 8 4}}\left( t \right) + \mathrm{x{1 3 1 5}}\left( t \right) + \mathrm{x{1 3 1 7}}\left( t \right) + \mathrm{x{1 3 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 6}}\left( t \right) \ \frac{dx{1 3 1 7}(t)}{dt} =& \alpha1 \mathrm{x{2 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 7}}\left( t \right) + \mathrm{x{1 2 8 5}}\left( t \right) + \mathrm{x{1 3 1 6}}\left( t \right) + \mathrm{x{1 3 1 8}}\left( t \right) + \mathrm{x{1 3 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 7}}\left( t \right) \ \frac{dx{1 3 1 8}(t)}{dt} =& \alpha1 \mathrm{x{2 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 8}}\left( t \right) + \mathrm{x{1 2 8 6}}\left( t \right) + \mathrm{x{1 3 1 7}}\left( t \right) + \mathrm{x{1 3 1 9}}\left( t \right) + \mathrm{x{1 3 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 8}}\left( t \right) \ \frac{dx{1 3 1 9}(t)}{dt} =& \alpha1 \mathrm{x{2 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 1 9}}\left( t \right) + \mathrm{x{1 2 8 7}}\left( t \right) + \mathrm{x{1 3 1 8}}\left( t \right) + \mathrm{x{1 3 2 0}}\left( t \right) + \mathrm{x{1 3 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 1 9}}\left( t \right) \ \frac{dx{1 3 2 0}(t)}{dt} =& \alpha1 \mathrm{x{2 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 0}}\left( t \right) + \mathrm{x{1 2 8 8}}\left( t \right) + \mathrm{x{1 3 1 9}}\left( t \right) + \mathrm{x{1 3 2 1}}\left( t \right) + \mathrm{x{1 3 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 0}}\left( t \right) \ \frac{dx{1 3 2 1}(t)}{dt} =& \alpha1 \mathrm{x{2 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 1}}\left( t \right) + \mathrm{x{1 2 8 9}}\left( t \right) + \mathrm{x{1 3 2 0}}\left( t \right) + \mathrm{x{1 3 2 2}}\left( t \right) + \mathrm{x{1 3 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 1}}\left( t \right) \ \frac{dx{1 3 2 2}(t)}{dt} =& \alpha1 \mathrm{x{2 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 2}}\left( t \right) + \mathrm{x{1 2 9 0}}\left( t \right) + \mathrm{x{1 3 2 1}}\left( t \right) + \mathrm{x{1 3 2 3}}\left( t \right) + \mathrm{x{1 3 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 2}}\left( t \right) \ \frac{dx{1 3 2 3}(t)}{dt} =& \alpha1 \mathrm{x{2 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 3}}\left( t \right) + \mathrm{x{1 2 9 1}}\left( t \right) + \mathrm{x{1 3 2 2}}\left( t \right) + \mathrm{x{1 3 2 4}}\left( t \right) + \mathrm{x{1 3 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{2 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 3}}\left( t \right) \ \frac{dx{1 3 2 4}(t)}{dt} =& \alpha1 \mathrm{x{3 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 4}}\left( t \right) + \mathrm{x{1 2 9 2}}\left( t \right) + \mathrm{x{1 3 2 3}}\left( t \right) + \mathrm{x{1 3 2 5}}\left( t \right) + \mathrm{x{1 3 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 4}}\left( t \right) \ \frac{dx{1 3 2 5}(t)}{dt} =& \alpha1 \mathrm{x{3 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 5}}\left( t \right) + \mathrm{x{1 2 9 3}}\left( t \right) + \mathrm{x{1 3 2 4}}\left( t \right) + \mathrm{x{1 3 2 6}}\left( t \right) + \mathrm{x{1 3 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 5}}\left( t \right) \ \frac{dx{1 3 2 6}(t)}{dt} =& \alpha1 \mathrm{x{3 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 6}}\left( t \right) + \mathrm{x{1 2 9 4}}\left( t \right) + \mathrm{x{1 3 2 5}}\left( t \right) + \mathrm{x{1 3 2 7}}\left( t \right) + \mathrm{x{1 3 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 6}}\left( t \right) \ \frac{dx{1 3 2 7}(t)}{dt} =& \alpha1 \mathrm{x{3 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 7}}\left( t \right) + \mathrm{x{1 2 9 5}}\left( t \right) + \mathrm{x{1 3 2 6}}\left( t \right) + \mathrm{x{1 3 2 8}}\left( t \right) + \mathrm{x{1 3 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 7}}\left( t \right) \ \frac{dx{1 3 2 8}(t)}{dt} =& \alpha1 \mathrm{x{3 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 8}}\left( t \right) + \mathrm{x{1 2 9 6}}\left( t \right) + \mathrm{x{1 3 2 7}}\left( t \right) + \mathrm{x{1 3 2 9}}\left( t \right) + \mathrm{x{1 3 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 8}}\left( t \right) \ \frac{dx{1 3 2 9}(t)}{dt} =& \alpha1 \mathrm{x{3 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 2 9}}\left( t \right) + \mathrm{x{1 2 9 7}}\left( t \right) + \mathrm{x{1 3 2 8}}\left( t \right) + \mathrm{x{1 3 3 0}}\left( t \right) + \mathrm{x{1 3 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 2 9}}\left( t \right) \ \frac{dx{1 3 3 0}(t)}{dt} =& \alpha1 \mathrm{x{3 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 0}}\left( t \right) + \mathrm{x{1 2 9 8}}\left( t \right) + \mathrm{x{1 3 2 9}}\left( t \right) + \mathrm{x{1 3 3 1}}\left( t \right) + \mathrm{x{1 3 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 0}}\left( t \right) \ \frac{dx{1 3 3 1}(t)}{dt} =& \alpha1 \mathrm{x{3 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 1}}\left( t \right) + \mathrm{x{1 2 9 9}}\left( t \right) + \mathrm{x{1 3 3 0}}\left( t \right) + \mathrm{x{1 3 3 2}}\left( t \right) + \mathrm{x{1 3 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 1}}\left( t \right) \ \frac{dx{1 3 3 2}(t)}{dt} =& \alpha1 \mathrm{x{3 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 2}}\left( t \right) + \mathrm{x{1 3 0 0}}\left( t \right) + \mathrm{x{1 3 3 1}}\left( t \right) + \mathrm{x{1 3 3 3}}\left( t \right) + \mathrm{x{1 3 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 2}}\left( t \right) \ \frac{dx{1 3 3 3}(t)}{dt} =& \alpha1 \mathrm{x{3 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 3}}\left( t \right) + \mathrm{x{1 3 0 1}}\left( t \right) + \mathrm{x{1 3 3 2}}\left( t \right) + \mathrm{x{1 3 3 4}}\left( t \right) + \mathrm{x{1 3 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 3}}\left( t \right) \ \frac{dx{1 3 3 4}(t)}{dt} =& \alpha1 \mathrm{x{3 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 4}}\left( t \right) + \mathrm{x{1 3 0 2}}\left( t \right) + \mathrm{x{1 3 3 3}}\left( t \right) + \mathrm{x{1 3 3 5}}\left( t \right) + \mathrm{x{1 3 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 4}}\left( t \right) \ \frac{dx{1 3 3 5}(t)}{dt} =& \alpha1 \mathrm{x{3 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 5}}\left( t \right) + \mathrm{x{1 3 0 3}}\left( t \right) + \mathrm{x{1 3 3 4}}\left( t \right) + \mathrm{x{1 3 3 6}}\left( t \right) + \mathrm{x{1 3 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 5}}\left( t \right) \ \frac{dx{1 3 3 6}(t)}{dt} =& \alpha1 \mathrm{x{3 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 6}}\left( t \right) + \mathrm{x{1 3 0 4}}\left( t \right) + \mathrm{x{1 3 3 5}}\left( t \right) + \mathrm{x{1 3 3 7}}\left( t \right) + \mathrm{x{1 3 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 6}}\left( t \right) \ \frac{dx{1 3 3 7}(t)}{dt} =& \alpha1 \mathrm{x{3 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 7}}\left( t \right) + \mathrm{x{1 3 0 5}}\left( t \right) + \mathrm{x{1 3 3 6}}\left( t \right) + \mathrm{x{1 3 3 8}}\left( t \right) + \mathrm{x{1 3 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 7}}\left( t \right) \ \frac{dx{1 3 3 8}(t)}{dt} =& \alpha1 \mathrm{x{3 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 8}}\left( t \right) + \mathrm{x{1 3 0 6}}\left( t \right) + \mathrm{x{1 3 3 7}}\left( t \right) + \mathrm{x{1 3 3 9}}\left( t \right) + \mathrm{x{1 3 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 8}}\left( t \right) \ \frac{dx{1 3 3 9}(t)}{dt} =& \alpha1 \mathrm{x{3 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 3 9}}\left( t \right) + \mathrm{x{1 3 0 7}}\left( t \right) + \mathrm{x{1 3 3 8}}\left( t \right) + \mathrm{x{1 3 4 0}}\left( t \right) + \mathrm{x{1 3 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 3 9}}\left( t \right) \ \frac{dx{1 3 4 0}(t)}{dt} =& \alpha1 \mathrm{x{3 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 0}}\left( t \right) + \mathrm{x{1 3 0 8}}\left( t \right) + \mathrm{x{1 3 3 9}}\left( t \right) + \mathrm{x{1 3 4 1}}\left( t \right) + \mathrm{x{1 3 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 0}}\left( t \right) \ \frac{dx{1 3 4 1}(t)}{dt} =& \alpha1 \mathrm{x{3 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 1}}\left( t \right) + \mathrm{x{1 3 0 9}}\left( t \right) + \mathrm{x{1 3 4 0}}\left( t \right) + \mathrm{x{1 3 4 2}}\left( t \right) + \mathrm{x{1 3 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 1}}\left( t \right) \ \frac{dx{1 3 4 2}(t)}{dt} =& \alpha1 \mathrm{x{3 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 2}}\left( t \right) + \mathrm{x{1 3 1 0}}\left( t \right) + \mathrm{x{1 3 4 1}}\left( t \right) + \mathrm{x{1 3 4 3}}\left( t \right) + \mathrm{x{1 3 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 2}}\left( t \right) \ \frac{dx{1 3 4 3}(t)}{dt} =& \alpha1 \mathrm{x{3 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 3}}\left( t \right) + \mathrm{x{1 3 1 1}}\left( t \right) + \mathrm{x{1 3 4 2}}\left( t \right) + \mathrm{x{1 3 4 4}}\left( t \right) + \mathrm{x{1 3 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 3}}\left( t \right) \ \frac{dx{1 3 4 4}(t)}{dt} =& \alpha1 \mathrm{x{3 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 4}}\left( t \right) + \mathrm{x{1 3 1 2}}\left( t \right) + \mathrm{x{1 3 1 3}}\left( t \right) + \mathrm{x{1 3 4 3}}\left( t \right) + \mathrm{x{1 3 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 4}}\left( t \right) \ \frac{dx{1 3 4 5}(t)}{dt} =& \alpha1 \mathrm{x{3 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 5}}\left( t \right) + \mathrm{x{1 3 1 3}}\left( t \right) + \mathrm{x{1 3 4 6}}\left( t \right) + \mathrm{x{1 3 7 6}}\left( t \right) + \mathrm{x{1 3 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 5}}\left( t \right) \ \frac{dx{1 3 4 6}(t)}{dt} =& \alpha1 \mathrm{x{3 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 6}}\left( t \right) + \mathrm{x{1 3 1 4}}\left( t \right) + \mathrm{x{1 3 4 5}}\left( t \right) + \mathrm{x{1 3 4 7}}\left( t \right) + \mathrm{x{1 3 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 6}}\left( t \right) \ \frac{dx{1 3 4 7}(t)}{dt} =& \alpha1 \mathrm{x{3 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 7}}\left( t \right) + \mathrm{x{1 3 1 5}}\left( t \right) + \mathrm{x{1 3 4 6}}\left( t \right) + \mathrm{x{1 3 4 8}}\left( t \right) + \mathrm{x{1 3 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 7}}\left( t \right) \ \frac{dx{1 3 4 8}(t)}{dt} =& \alpha1 \mathrm{x{3 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 8}}\left( t \right) + \mathrm{x{1 3 1 6}}\left( t \right) + \mathrm{x{1 3 4 7}}\left( t \right) + \mathrm{x{1 3 4 9}}\left( t \right) + \mathrm{x{1 3 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 8}}\left( t \right) \ \frac{dx{1 3 4 9}(t)}{dt} =& \alpha1 \mathrm{x{3 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 4 9}}\left( t \right) + \mathrm{x{1 3 1 7}}\left( t \right) + \mathrm{x{1 3 4 8}}\left( t \right) + \mathrm{x{1 3 5 0}}\left( t \right) + \mathrm{x{1 3 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 4 9}}\left( t \right) \ \frac{dx{1 3 5 0}(t)}{dt} =& \alpha1 \mathrm{x{3 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 0}}\left( t \right) + \mathrm{x{1 3 1 8}}\left( t \right) + \mathrm{x{1 3 4 9}}\left( t \right) + \mathrm{x{1 3 5 1}}\left( t \right) + \mathrm{x{1 3 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 0}}\left( t \right) \ \frac{dx{1 3 5 1}(t)}{dt} =& \alpha1 \mathrm{x{3 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 1}}\left( t \right) + \mathrm{x{1 3 1 9}}\left( t \right) + \mathrm{x{1 3 5 0}}\left( t \right) + \mathrm{x{1 3 5 2}}\left( t \right) + \mathrm{x{1 3 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 1}}\left( t \right) \ \frac{dx{1 3 5 2}(t)}{dt} =& \alpha1 \mathrm{x{3 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 2}}\left( t \right) + \mathrm{x{1 3 2 0}}\left( t \right) + \mathrm{x{1 3 5 1}}\left( t \right) + \mathrm{x{1 3 5 3}}\left( t \right) + \mathrm{x{1 3 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 2}}\left( t \right) \ \frac{dx{1 3 5 3}(t)}{dt} =& \alpha1 \mathrm{x{3 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 3}}\left( t \right) + \mathrm{x{1 3 2 1}}\left( t \right) + \mathrm{x{1 3 5 2}}\left( t \right) + \mathrm{x{1 3 5 4}}\left( t \right) + \mathrm{x{1 3 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 3}}\left( t \right) \ \frac{dx{1 3 5 4}(t)}{dt} =& \alpha1 \mathrm{x{3 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 4}}\left( t \right) + \mathrm{x{1 3 2 2}}\left( t \right) + \mathrm{x{1 3 5 3}}\left( t \right) + \mathrm{x{1 3 5 5}}\left( t \right) + \mathrm{x{1 3 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 4}}\left( t \right) \ \frac{dx{1 3 5 5}(t)}{dt} =& \alpha1 \mathrm{x{3 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 5}}\left( t \right) + \mathrm{x{1 3 2 3}}\left( t \right) + \mathrm{x{1 3 5 4}}\left( t \right) + \mathrm{x{1 3 5 6}}\left( t \right) + \mathrm{x{1 3 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 5}}\left( t \right) \ \frac{dx{1 3 5 6}(t)}{dt} =& \alpha1 \mathrm{x{3 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 6}}\left( t \right) + \mathrm{x{1 3 2 4}}\left( t \right) + \mathrm{x{1 3 5 5}}\left( t \right) + \mathrm{x{1 3 5 7}}\left( t \right) + \mathrm{x{1 3 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 6}}\left( t \right) \ \frac{dx{1 3 5 7}(t)}{dt} =& \alpha1 \mathrm{x{3 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 7}}\left( t \right) + \mathrm{x{1 3 2 5}}\left( t \right) + \mathrm{x{1 3 5 6}}\left( t \right) + \mathrm{x{1 3 5 8}}\left( t \right) + \mathrm{x{1 3 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 7}}\left( t \right) \ \frac{dx{1 3 5 8}(t)}{dt} =& \alpha1 \mathrm{x{3 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 8}}\left( t \right) + \mathrm{x{1 3 2 6}}\left( t \right) + \mathrm{x{1 3 5 7}}\left( t \right) + \mathrm{x{1 3 5 9}}\left( t \right) + \mathrm{x{1 3 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 8}}\left( t \right) \ \frac{dx{1 3 5 9}(t)}{dt} =& \alpha1 \mathrm{x{3 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 5 9}}\left( t \right) + \mathrm{x{1 3 2 7}}\left( t \right) + \mathrm{x{1 3 5 8}}\left( t \right) + \mathrm{x{1 3 6 0}}\left( t \right) + \mathrm{x{1 3 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 5 9}}\left( t \right) \ \frac{dx{1 3 6 0}(t)}{dt} =& \alpha1 \mathrm{x{3 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 0}}\left( t \right) + \mathrm{x{1 3 2 8}}\left( t \right) + \mathrm{x{1 3 5 9}}\left( t \right) + \mathrm{x{1 3 6 1}}\left( t \right) + \mathrm{x{1 3 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 0}}\left( t \right) \ \frac{dx{1 3 6 1}(t)}{dt} =& \alpha1 \mathrm{x{3 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 1}}\left( t \right) + \mathrm{x{1 3 2 9}}\left( t \right) + \mathrm{x{1 3 6 0}}\left( t \right) + \mathrm{x{1 3 6 2}}\left( t \right) + \mathrm{x{1 3 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 1}}\left( t \right) \ \frac{dx{1 3 6 2}(t)}{dt} =& \alpha1 \mathrm{x{3 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 2}}\left( t \right) + \mathrm{x{1 3 3 0}}\left( t \right) + \mathrm{x{1 3 6 1}}\left( t \right) + \mathrm{x{1 3 6 3}}\left( t \right) + \mathrm{x{1 3 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 2}}\left( t \right) \ \frac{dx{1 3 6 3}(t)}{dt} =& \alpha1 \mathrm{x{3 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 3}}\left( t \right) + \mathrm{x{1 3 3 1}}\left( t \right) + \mathrm{x{1 3 6 2}}\left( t \right) + \mathrm{x{1 3 6 4}}\left( t \right) + \mathrm{x{1 3 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 3}}\left( t \right) \ \frac{dx{1 3 6 4}(t)}{dt} =& \alpha1 \mathrm{x{3 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 4}}\left( t \right) + \mathrm{x{1 3 3 2}}\left( t \right) + \mathrm{x{1 3 6 3}}\left( t \right) + \mathrm{x{1 3 6 5}}\left( t \right) + \mathrm{x{1 3 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 4}}\left( t \right) \ \frac{dx{1 3 6 5}(t)}{dt} =& \alpha1 \mathrm{x{3 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 5}}\left( t \right) + \mathrm{x{1 3 3 3}}\left( t \right) + \mathrm{x{1 3 6 4}}\left( t \right) + \mathrm{x{1 3 6 6}}\left( t \right) + \mathrm{x{1 3 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 5}}\left( t \right) \ \frac{dx{1 3 6 6}(t)}{dt} =& \alpha1 \mathrm{x{3 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 6}}\left( t \right) + \mathrm{x{1 3 3 4}}\left( t \right) + \mathrm{x{1 3 6 5}}\left( t \right) + \mathrm{x{1 3 6 7}}\left( t \right) + \mathrm{x{1 3 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 6}}\left( t \right) \ \frac{dx{1 3 6 7}(t)}{dt} =& \alpha1 \mathrm{x{3 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 7}}\left( t \right) + \mathrm{x{1 3 3 5}}\left( t \right) + \mathrm{x{1 3 6 6}}\left( t \right) + \mathrm{x{1 3 6 8}}\left( t \right) + \mathrm{x{1 3 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 7}}\left( t \right) \ \frac{dx{1 3 6 8}(t)}{dt} =& \alpha1 \mathrm{x{3 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 8}}\left( t \right) + \mathrm{x{1 3 3 6}}\left( t \right) + \mathrm{x{1 3 6 7}}\left( t \right) + \mathrm{x{1 3 6 9}}\left( t \right) + \mathrm{x{1 4 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 8}}\left( t \right) \ \frac{dx{1 3 6 9}(t)}{dt} =& \alpha1 \mathrm{x{3 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 6 9}}\left( t \right) + \mathrm{x{1 3 3 7}}\left( t \right) + \mathrm{x{1 3 6 8}}\left( t \right) + \mathrm{x{1 3 7 0}}\left( t \right) + \mathrm{x{1 4 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 6 9}}\left( t \right) \ \frac{dx{1 3 7 0}(t)}{dt} =& \alpha1 \mathrm{x{3 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 0}}\left( t \right) + \mathrm{x{1 3 3 8}}\left( t \right) + \mathrm{x{1 3 6 9}}\left( t \right) + \mathrm{x{1 3 7 1}}\left( t \right) + \mathrm{x{1 4 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 0}}\left( t \right) \ \frac{dx{1 3 7 1}(t)}{dt} =& \alpha1 \mathrm{x{3 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 1}}\left( t \right) + \mathrm{x{1 3 3 9}}\left( t \right) + \mathrm{x{1 3 7 0}}\left( t \right) + \mathrm{x{1 3 7 2}}\left( t \right) + \mathrm{x{1 4 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 1}}\left( t \right) \ \frac{dx{1 3 7 2}(t)}{dt} =& \alpha1 \mathrm{x{3 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 2}}\left( t \right) + \mathrm{x{1 3 4 0}}\left( t \right) + \mathrm{x{1 3 7 1}}\left( t \right) + \mathrm{x{1 3 7 3}}\left( t \right) + \mathrm{x{1 4 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 2}}\left( t \right) \ \frac{dx{1 3 7 3}(t)}{dt} =& \alpha1 \mathrm{x{3 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 3}}\left( t \right) + \mathrm{x{1 3 4 1}}\left( t \right) + \mathrm{x{1 3 7 2}}\left( t \right) + \mathrm{x{1 3 7 4}}\left( t \right) + \mathrm{x{1 4 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 3}}\left( t \right) \ \frac{dx{1 3 7 4}(t)}{dt} =& \alpha1 \mathrm{x{3 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 4}}\left( t \right) + \mathrm{x{1 3 4 2}}\left( t \right) + \mathrm{x{1 3 7 3}}\left( t \right) + \mathrm{x{1 3 7 5}}\left( t \right) + \mathrm{x{1 4 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 4}}\left( t \right) \ \frac{dx{1 3 7 5}(t)}{dt} =& \alpha1 \mathrm{x{3 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 5}}\left( t \right) + \mathrm{x{1 3 4 3}}\left( t \right) + \mathrm{x{1 3 7 4}}\left( t \right) + \mathrm{x{1 3 7 6}}\left( t \right) + \mathrm{x{1 4 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 5}}\left( t \right) \ \frac{dx{1 3 7 6}(t)}{dt} =& \alpha1 \mathrm{x{3 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 6}}\left( t \right) + \mathrm{x{1 3 4 4}}\left( t \right) + \mathrm{x{1 3 4 5}}\left( t \right) + \mathrm{x{1 3 7 5}}\left( t \right) + \mathrm{x{1 4 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 6}}\left( t \right) \ \frac{dx{1 3 7 7}(t)}{dt} =& \alpha1 \mathrm{x{3 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 7}}\left( t \right) + \mathrm{x{1 3 4 5}}\left( t \right) + \mathrm{x{1 3 7 8}}\left( t \right) + \mathrm{x{1 4 0 8}}\left( t \right) + \mathrm{x{1 4 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 7}}\left( t \right) \ \frac{dx{1 3 7 8}(t)}{dt} =& \alpha1 \mathrm{x{3 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 8}}\left( t \right) + \mathrm{x{1 3 4 6}}\left( t \right) + \mathrm{x{1 3 7 7}}\left( t \right) + \mathrm{x{1 3 7 9}}\left( t \right) + \mathrm{x{1 4 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 8}}\left( t \right) \ \frac{dx{1 3 7 9}(t)}{dt} =& \alpha1 \mathrm{x{3 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 7 9}}\left( t \right) + \mathrm{x{1 3 4 7}}\left( t \right) + \mathrm{x{1 3 7 8}}\left( t \right) + \mathrm{x{1 3 8 0}}\left( t \right) + \mathrm{x{1 4 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 7 9}}\left( t \right) \ \frac{dx{1 3 8 0}(t)}{dt} =& \alpha1 \mathrm{x{3 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 0}}\left( t \right) + \mathrm{x{1 3 4 8}}\left( t \right) + \mathrm{x{1 3 7 9}}\left( t \right) + \mathrm{x{1 3 8 1}}\left( t \right) + \mathrm{x{1 4 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 0}}\left( t \right) \ \frac{dx{1 3 8 1}(t)}{dt} =& \alpha1 \mathrm{x{3 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 1}}\left( t \right) + \mathrm{x{1 3 4 9}}\left( t \right) + \mathrm{x{1 3 8 0}}\left( t \right) + \mathrm{x{1 3 8 2}}\left( t \right) + \mathrm{x{1 4 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 1}}\left( t \right) \ \frac{dx{1 3 8 2}(t)}{dt} =& \alpha1 \mathrm{x{3 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 2}}\left( t \right) + \mathrm{x{1 3 5 0}}\left( t \right) + \mathrm{x{1 3 8 1}}\left( t \right) + \mathrm{x{1 3 8 3}}\left( t \right) + \mathrm{x{1 4 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 2}}\left( t \right) \ \frac{dx{1 3 8 3}(t)}{dt} =& \alpha1 \mathrm{x{3 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 3}}\left( t \right) + \mathrm{x{1 3 5 1}}\left( t \right) + \mathrm{x{1 3 8 2}}\left( t \right) + \mathrm{x{1 3 8 4}}\left( t \right) + \mathrm{x{1 4 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 3}}\left( t \right) \ \frac{dx{1 3 8 4}(t)}{dt} =& \alpha1 \mathrm{x{3 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 4}}\left( t \right) + \mathrm{x{1 3 5 2}}\left( t \right) + \mathrm{x{1 3 8 3}}\left( t \right) + \mathrm{x{1 3 8 5}}\left( t \right) + \mathrm{x{1 4 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 4}}\left( t \right) \ \frac{dx{1 3 8 5}(t)}{dt} =& \alpha1 \mathrm{x{3 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 5}}\left( t \right) + \mathrm{x{1 3 5 3}}\left( t \right) + \mathrm{x{1 3 8 4}}\left( t \right) + \mathrm{x{1 3 8 6}}\left( t \right) + \mathrm{x{1 4 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 5}}\left( t \right) \ \frac{dx{1 3 8 6}(t)}{dt} =& \alpha1 \mathrm{x{3 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 6}}\left( t \right) + \mathrm{x{1 3 5 4}}\left( t \right) + \mathrm{x{1 3 8 5}}\left( t \right) + \mathrm{x{1 3 8 7}}\left( t \right) + \mathrm{x{1 4 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 6}}\left( t \right) \ \frac{dx{1 3 8 7}(t)}{dt} =& \alpha1 \mathrm{x{3 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 7}}\left( t \right) + \mathrm{x{1 3 5 5}}\left( t \right) + \mathrm{x{1 3 8 6}}\left( t \right) + \mathrm{x{1 3 8 8}}\left( t \right) + \mathrm{x{1 4 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 7}}\left( t \right) \ \frac{dx{1 3 8 8}(t)}{dt} =& \alpha1 \mathrm{x{3 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 8}}\left( t \right) + \mathrm{x{1 3 5 6}}\left( t \right) + \mathrm{x{1 3 8 7}}\left( t \right) + \mathrm{x{1 3 8 9}}\left( t \right) + \mathrm{x{1 4 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 8}}\left( t \right) \ \frac{dx{1 3 8 9}(t)}{dt} =& \alpha1 \mathrm{x{3 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 8 9}}\left( t \right) + \mathrm{x{1 3 5 7}}\left( t \right) + \mathrm{x{1 3 8 8}}\left( t \right) + \mathrm{x{1 3 9 0}}\left( t \right) + \mathrm{x{1 4 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 8 9}}\left( t \right) \ \frac{dx{1 3 9 0}(t)}{dt} =& \alpha1 \mathrm{x{3 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 0}}\left( t \right) + \mathrm{x{1 3 5 8}}\left( t \right) + \mathrm{x{1 3 8 9}}\left( t \right) + \mathrm{x{1 3 9 1}}\left( t \right) + \mathrm{x{1 4 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 0}}\left( t \right) \ \frac{dx{1 3 9 1}(t)}{dt} =& \alpha1 \mathrm{x{3 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 1}}\left( t \right) + \mathrm{x{1 3 5 9}}\left( t \right) + \mathrm{x{1 3 9 0}}\left( t \right) + \mathrm{x{1 3 9 2}}\left( t \right) + \mathrm{x{1 4 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 1}}\left( t \right) \ \frac{dx{1 3 9 2}(t)}{dt} =& \alpha1 \mathrm{x{3 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 2}}\left( t \right) + \mathrm{x{1 3 6 0}}\left( t \right) + \mathrm{x{1 3 9 1}}\left( t \right) + \mathrm{x{1 3 9 3}}\left( t \right) + \mathrm{x{1 4 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 2}}\left( t \right) \ \frac{dx{1 3 9 3}(t)}{dt} =& \alpha1 \mathrm{x{3 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 3}}\left( t \right) + \mathrm{x{1 3 6 1}}\left( t \right) + \mathrm{x{1 3 9 2}}\left( t \right) + \mathrm{x{1 3 9 4}}\left( t \right) + \mathrm{x{1 4 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 3}}\left( t \right) \ \frac{dx{1 3 9 4}(t)}{dt} =& \alpha1 \mathrm{x{3 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 4}}\left( t \right) + \mathrm{x{1 3 6 2}}\left( t \right) + \mathrm{x{1 3 9 3}}\left( t \right) + \mathrm{x{1 3 9 5}}\left( t \right) + \mathrm{x{1 4 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 4}}\left( t \right) \ \frac{dx{1 3 9 5}(t)}{dt} =& \alpha1 \mathrm{x{3 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 5}}\left( t \right) + \mathrm{x{1 3 6 3}}\left( t \right) + \mathrm{x{1 3 9 4}}\left( t \right) + \mathrm{x{1 3 9 6}}\left( t \right) + \mathrm{x{1 4 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 5}}\left( t \right) \ \frac{dx{1 3 9 6}(t)}{dt} =& \alpha1 \mathrm{x{3 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 6}}\left( t \right) + \mathrm{x{1 3 6 4}}\left( t \right) + \mathrm{x{1 3 9 5}}\left( t \right) + \mathrm{x{1 3 9 7}}\left( t \right) + \mathrm{x{1 4 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 6}}\left( t \right) \ \frac{dx{1 3 9 7}(t)}{dt} =& \alpha1 \mathrm{x{3 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 7}}\left( t \right) + \mathrm{x{1 3 6 5}}\left( t \right) + \mathrm{x{1 3 9 6}}\left( t \right) + \mathrm{x{1 3 9 8}}\left( t \right) + \mathrm{x{1 4 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 7}}\left( t \right) \ \frac{dx{1 3 9 8}(t)}{dt} =& \alpha1 \mathrm{x{3 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 8}}\left( t \right) + \mathrm{x{1 3 6 6}}\left( t \right) + \mathrm{x{1 3 9 7}}\left( t \right) + \mathrm{x{1 3 9 9}}\left( t \right) + \mathrm{x{1 4 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 8}}\left( t \right) \ \frac{dx{1 3 9 9}(t)}{dt} =& \alpha1 \mathrm{x{3 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 3 9 9}}\left( t \right) + \mathrm{x{1 3 6 7}}\left( t \right) + \mathrm{x{1 3 9 8}}\left( t \right) + \mathrm{x{1 4 0 0}}\left( t \right) + \mathrm{x{1 4 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 3 9 9}}\left( t \right) \ \frac{dx{1 4 0 0}(t)}{dt} =& \alpha1 \mathrm{x{3 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 0}}\left( t \right) + \mathrm{x{1 3 6 8}}\left( t \right) + \mathrm{x{1 3 9 9}}\left( t \right) + \mathrm{x{1 4 0 1}}\left( t \right) + \mathrm{x{1 4 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 0}}\left( t \right) \ \frac{dx{1 4 0 1}(t)}{dt} =& \alpha1 \mathrm{x{3 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 1}}\left( t \right) + \mathrm{x{1 3 6 9}}\left( t \right) + \mathrm{x{1 4 0 0}}\left( t \right) + \mathrm{x{1 4 0 2}}\left( t \right) + \mathrm{x{1 4 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 1}}\left( t \right) \ \frac{dx{1 4 0 2}(t)}{dt} =& \alpha1 \mathrm{x{3 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 2}}\left( t \right) + \mathrm{x{1 3 7 0}}\left( t \right) + \mathrm{x{1 4 0 1}}\left( t \right) + \mathrm{x{1 4 0 3}}\left( t \right) + \mathrm{x{1 4 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 2}}\left( t \right) \ \frac{dx{1 4 0 3}(t)}{dt} =& \alpha1 \mathrm{x{3 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 3}}\left( t \right) + \mathrm{x{1 3 7 1}}\left( t \right) + \mathrm{x{1 4 0 2}}\left( t \right) + \mathrm{x{1 4 0 4}}\left( t \right) + \mathrm{x{1 4 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 3}}\left( t \right) \ \frac{dx{1 4 0 4}(t)}{dt} =& \alpha1 \mathrm{x{3 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 4}}\left( t \right) + \mathrm{x{1 3 7 2}}\left( t \right) + \mathrm{x{1 4 0 3}}\left( t \right) + \mathrm{x{1 4 0 5}}\left( t \right) + \mathrm{x{1 4 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 4}}\left( t \right) \ \frac{dx{1 4 0 5}(t)}{dt} =& \alpha1 \mathrm{x{3 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 5}}\left( t \right) + \mathrm{x{1 3 7 3}}\left( t \right) + \mathrm{x{1 4 0 4}}\left( t \right) + \mathrm{x{1 4 0 6}}\left( t \right) + \mathrm{x{1 4 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 5}}\left( t \right) \ \frac{dx{1 4 0 6}(t)}{dt} =& \alpha1 \mathrm{x{3 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 6}}\left( t \right) + \mathrm{x{1 3 7 4}}\left( t \right) + \mathrm{x{1 4 0 5}}\left( t \right) + \mathrm{x{1 4 0 7}}\left( t \right) + \mathrm{x{1 4 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 6}}\left( t \right) \ \frac{dx{1 4 0 7}(t)}{dt} =& \alpha1 \mathrm{x{3 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 7}}\left( t \right) + \mathrm{x{1 3 7 5}}\left( t \right) + \mathrm{x{1 4 0 6}}\left( t \right) + \mathrm{x{1 4 0 8}}\left( t \right) + \mathrm{x{1 4 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 7}}\left( t \right) \ \frac{dx{1 4 0 8}(t)}{dt} =& \alpha1 \mathrm{x{3 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 8}}\left( t \right) + \mathrm{x{1 3 7 6}}\left( t \right) + \mathrm{x{1 3 7 7}}\left( t \right) + \mathrm{x{1 4 0 7}}\left( t \right) + \mathrm{x{1 4 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 8}}\left( t \right) \ \frac{dx{1 4 0 9}(t)}{dt} =& \alpha1 \mathrm{x{3 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 0 9}}\left( t \right) + \mathrm{x{1 3 7 7}}\left( t \right) + \mathrm{x{1 4 1 0}}\left( t \right) + \mathrm{x{1 4 4 0}}\left( t \right) + \mathrm{x{1 4 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 0 9}}\left( t \right) \ \frac{dx{1 4 1 0}(t)}{dt} =& \alpha1 \mathrm{x{3 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 0}}\left( t \right) + \mathrm{x{1 3 7 8}}\left( t \right) + \mathrm{x{1 4 0 9}}\left( t \right) + \mathrm{x{1 4 1 1}}\left( t \right) + \mathrm{x{1 4 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 0}}\left( t \right) \ \frac{dx{1 4 1 1}(t)}{dt} =& \alpha1 \mathrm{x{3 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 1}}\left( t \right) + \mathrm{x{1 3 7 9}}\left( t \right) + \mathrm{x{1 4 1 0}}\left( t \right) + \mathrm{x{1 4 1 2}}\left( t \right) + \mathrm{x{1 4 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 1}}\left( t \right) \ \frac{dx{1 4 1 2}(t)}{dt} =& \alpha1 \mathrm{x{3 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 2}}\left( t \right) + \mathrm{x{1 3 8 0}}\left( t \right) + \mathrm{x{1 4 1 1}}\left( t \right) + \mathrm{x{1 4 1 3}}\left( t \right) + \mathrm{x{1 4 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 2}}\left( t \right) \ \frac{dx{1 4 1 3}(t)}{dt} =& \alpha1 \mathrm{x{3 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 3}}\left( t \right) + \mathrm{x{1 3 8 1}}\left( t \right) + \mathrm{x{1 4 1 2}}\left( t \right) + \mathrm{x{1 4 1 4}}\left( t \right) + \mathrm{x{1 4 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 3}}\left( t \right) \ \frac{dx{1 4 1 4}(t)}{dt} =& \alpha1 \mathrm{x{3 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 4}}\left( t \right) + \mathrm{x{1 3 8 2}}\left( t \right) + \mathrm{x{1 4 1 3}}\left( t \right) + \mathrm{x{1 4 1 5}}\left( t \right) + \mathrm{x{1 4 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 4}}\left( t \right) \ \frac{dx{1 4 1 5}(t)}{dt} =& \alpha1 \mathrm{x{3 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 5}}\left( t \right) + \mathrm{x{1 3 8 3}}\left( t \right) + \mathrm{x{1 4 1 4}}\left( t \right) + \mathrm{x{1 4 1 6}}\left( t \right) + \mathrm{x{1 4 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 5}}\left( t \right) \ \frac{dx{1 4 1 6}(t)}{dt} =& \alpha1 \mathrm{x{3 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 6}}\left( t \right) + \mathrm{x{1 3 8 4}}\left( t \right) + \mathrm{x{1 4 1 5}}\left( t \right) + \mathrm{x{1 4 1 7}}\left( t \right) + \mathrm{x{1 4 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 6}}\left( t \right) \ \frac{dx{1 4 1 7}(t)}{dt} =& \alpha1 \mathrm{x{3 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 7}}\left( t \right) + \mathrm{x{1 3 8 5}}\left( t \right) + \mathrm{x{1 4 1 6}}\left( t \right) + \mathrm{x{1 4 1 8}}\left( t \right) + \mathrm{x{1 4 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 7}}\left( t \right) \ \frac{dx{1 4 1 8}(t)}{dt} =& \alpha1 \mathrm{x{3 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 8}}\left( t \right) + \mathrm{x{1 3 8 6}}\left( t \right) + \mathrm{x{1 4 1 7}}\left( t \right) + \mathrm{x{1 4 1 9}}\left( t \right) + \mathrm{x{1 4 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 8}}\left( t \right) \ \frac{dx{1 4 1 9}(t)}{dt} =& \alpha1 \mathrm{x{3 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 1 9}}\left( t \right) + \mathrm{x{1 3 8 7}}\left( t \right) + \mathrm{x{1 4 1 8}}\left( t \right) + \mathrm{x{1 4 2 0}}\left( t \right) + \mathrm{x{1 4 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 1 9}}\left( t \right) \ \frac{dx{1 4 2 0}(t)}{dt} =& \alpha1 \mathrm{x{3 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 0}}\left( t \right) + \mathrm{x{1 3 8 8}}\left( t \right) + \mathrm{x{1 4 1 9}}\left( t \right) + \mathrm{x{1 4 2 1}}\left( t \right) + \mathrm{x{1 4 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 0}}\left( t \right) \ \frac{dx{1 4 2 1}(t)}{dt} =& \alpha1 \mathrm{x{3 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 1}}\left( t \right) + \mathrm{x{1 3 8 9}}\left( t \right) + \mathrm{x{1 4 2 0}}\left( t \right) + \mathrm{x{1 4 2 2}}\left( t \right) + \mathrm{x{1 4 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 1}}\left( t \right) \ \frac{dx{1 4 2 2}(t)}{dt} =& \alpha1 \mathrm{x{3 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 2}}\left( t \right) + \mathrm{x{1 3 9 0}}\left( t \right) + \mathrm{x{1 4 2 1}}\left( t \right) + \mathrm{x{1 4 2 3}}\left( t \right) + \mathrm{x{1 4 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 2}}\left( t \right) \ \frac{dx{1 4 2 3}(t)}{dt} =& \alpha1 \mathrm{x{3 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 3}}\left( t \right) + \mathrm{x{1 3 9 1}}\left( t \right) + \mathrm{x{1 4 2 2}}\left( t \right) + \mathrm{x{1 4 2 4}}\left( t \right) + \mathrm{x{1 4 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{3 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 3}}\left( t \right) \ \frac{dx{1 4 2 4}(t)}{dt} =& \alpha1 \mathrm{x{4 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 4}}\left( t \right) + \mathrm{x{1 3 9 2}}\left( t \right) + \mathrm{x{1 4 2 3}}\left( t \right) + \mathrm{x{1 4 2 5}}\left( t \right) + \mathrm{x{1 4 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 4}}\left( t \right) \ \frac{dx{1 4 2 5}(t)}{dt} =& \alpha1 \mathrm{x{4 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 5}}\left( t \right) + \mathrm{x{1 3 9 3}}\left( t \right) + \mathrm{x{1 4 2 4}}\left( t \right) + \mathrm{x{1 4 2 6}}\left( t \right) + \mathrm{x{1 4 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 5}}\left( t \right) \ \frac{dx{1 4 2 6}(t)}{dt} =& \alpha1 \mathrm{x{4 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 6}}\left( t \right) + \mathrm{x{1 3 9 4}}\left( t \right) + \mathrm{x{1 4 2 5}}\left( t \right) + \mathrm{x{1 4 2 7}}\left( t \right) + \mathrm{x{1 4 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 6}}\left( t \right) \ \frac{dx{1 4 2 7}(t)}{dt} =& \alpha1 \mathrm{x{4 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 7}}\left( t \right) + \mathrm{x{1 3 9 5}}\left( t \right) + \mathrm{x{1 4 2 6}}\left( t \right) + \mathrm{x{1 4 2 8}}\left( t \right) + \mathrm{x{1 4 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 7}}\left( t \right) \ \frac{dx{1 4 2 8}(t)}{dt} =& \alpha1 \mathrm{x{4 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 8}}\left( t \right) + \mathrm{x{1 3 9 6}}\left( t \right) + \mathrm{x{1 4 2 7}}\left( t \right) + \mathrm{x{1 4 2 9}}\left( t \right) + \mathrm{x{1 4 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 8}}\left( t \right) \ \frac{dx{1 4 2 9}(t)}{dt} =& \alpha1 \mathrm{x{4 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 2 9}}\left( t \right) + \mathrm{x{1 3 9 7}}\left( t \right) + \mathrm{x{1 4 2 8}}\left( t \right) + \mathrm{x{1 4 3 0}}\left( t \right) + \mathrm{x{1 4 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 2 9}}\left( t \right) \ \frac{dx{1 4 3 0}(t)}{dt} =& \alpha1 \mathrm{x{4 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 0}}\left( t \right) + \mathrm{x{1 3 9 8}}\left( t \right) + \mathrm{x{1 4 2 9}}\left( t \right) + \mathrm{x{1 4 3 1}}\left( t \right) + \mathrm{x{1 4 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 0}}\left( t \right) \ \frac{dx{1 4 3 1}(t)}{dt} =& \alpha1 \mathrm{x{4 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 1}}\left( t \right) + \mathrm{x{1 3 9 9}}\left( t \right) + \mathrm{x{1 4 3 0}}\left( t \right) + \mathrm{x{1 4 3 2}}\left( t \right) + \mathrm{x{1 4 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 1}}\left( t \right) \ \frac{dx{1 4 3 2}(t)}{dt} =& \alpha1 \mathrm{x{4 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 2}}\left( t \right) + \mathrm{x{1 4 0 0}}\left( t \right) + \mathrm{x{1 4 3 1}}\left( t \right) + \mathrm{x{1 4 3 3}}\left( t \right) + \mathrm{x{1 4 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 2}}\left( t \right) \ \frac{dx{1 4 3 3}(t)}{dt} =& \alpha1 \mathrm{x{4 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 3}}\left( t \right) + \mathrm{x{1 4 0 1}}\left( t \right) + \mathrm{x{1 4 3 2}}\left( t \right) + \mathrm{x{1 4 3 4}}\left( t \right) + \mathrm{x{1 4 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 3}}\left( t \right) \ \frac{dx{1 4 3 4}(t)}{dt} =& \alpha1 \mathrm{x{4 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 4}}\left( t \right) + \mathrm{x{1 4 0 2}}\left( t \right) + \mathrm{x{1 4 3 3}}\left( t \right) + \mathrm{x{1 4 3 5}}\left( t \right) + \mathrm{x{1 4 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 4}}\left( t \right) \ \frac{dx{1 4 3 5}(t)}{dt} =& \alpha1 \mathrm{x{4 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 5}}\left( t \right) + \mathrm{x{1 4 0 3}}\left( t \right) + \mathrm{x{1 4 3 4}}\left( t \right) + \mathrm{x{1 4 3 6}}\left( t \right) + \mathrm{x{1 4 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 5}}\left( t \right) \ \frac{dx{1 4 3 6}(t)}{dt} =& \alpha1 \mathrm{x{4 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 6}}\left( t \right) + \mathrm{x{1 4 0 4}}\left( t \right) + \mathrm{x{1 4 3 5}}\left( t \right) + \mathrm{x{1 4 3 7}}\left( t \right) + \mathrm{x{1 4 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 6}}\left( t \right) \ \frac{dx{1 4 3 7}(t)}{dt} =& \alpha1 \mathrm{x{4 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 7}}\left( t \right) + \mathrm{x{1 4 0 5}}\left( t \right) + \mathrm{x{1 4 3 6}}\left( t \right) + \mathrm{x{1 4 3 8}}\left( t \right) + \mathrm{x{1 4 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 7}}\left( t \right) \ \frac{dx{1 4 3 8}(t)}{dt} =& \alpha1 \mathrm{x{4 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 8}}\left( t \right) + \mathrm{x{1 4 0 6}}\left( t \right) + \mathrm{x{1 4 3 7}}\left( t \right) + \mathrm{x{1 4 3 9}}\left( t \right) + \mathrm{x{1 4 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 8}}\left( t \right) \ \frac{dx{1 4 3 9}(t)}{dt} =& \alpha1 \mathrm{x{4 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 3 9}}\left( t \right) + \mathrm{x{1 4 0 7}}\left( t \right) + \mathrm{x{1 4 3 8}}\left( t \right) + \mathrm{x{1 4 4 0}}\left( t \right) + \mathrm{x{1 4 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 3 9}}\left( t \right) \ \frac{dx{1 4 4 0}(t)}{dt} =& \alpha1 \mathrm{x{4 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 0}}\left( t \right) + \mathrm{x{1 4 0 8}}\left( t \right) + \mathrm{x{1 4 0 9}}\left( t \right) + \mathrm{x{1 4 3 9}}\left( t \right) + \mathrm{x{1 4 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 0}}\left( t \right) \ \frac{dx{1 4 4 1}(t)}{dt} =& \alpha1 \mathrm{x{4 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 1}}\left( t \right) + \mathrm{x{1 4 0 9}}\left( t \right) + \mathrm{x{1 4 4 2}}\left( t \right) + \mathrm{x{1 4 7 2}}\left( t \right) + \mathrm{x{1 4 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 1}}\left( t \right) \ \frac{dx{1 4 4 2}(t)}{dt} =& \alpha1 \mathrm{x{4 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 2}}\left( t \right) + \mathrm{x{1 4 1 0}}\left( t \right) + \mathrm{x{1 4 4 1}}\left( t \right) + \mathrm{x{1 4 4 3}}\left( t \right) + \mathrm{x{1 4 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 2}}\left( t \right) \ \frac{dx{1 4 4 3}(t)}{dt} =& \alpha1 \mathrm{x{4 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 3}}\left( t \right) + \mathrm{x{1 4 1 1}}\left( t \right) + \mathrm{x{1 4 4 2}}\left( t \right) + \mathrm{x{1 4 4 4}}\left( t \right) + \mathrm{x{1 4 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 3}}\left( t \right) \ \frac{dx{1 4 4 4}(t)}{dt} =& \alpha1 \mathrm{x{4 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 4}}\left( t \right) + \mathrm{x{1 4 1 2}}\left( t \right) + \mathrm{x{1 4 4 3}}\left( t \right) + \mathrm{x{1 4 4 5}}\left( t \right) + \mathrm{x{1 4 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 4}}\left( t \right) \ \frac{dx{1 4 4 5}(t)}{dt} =& \alpha1 \mathrm{x{4 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 5}}\left( t \right) + \mathrm{x{1 4 1 3}}\left( t \right) + \mathrm{x{1 4 4 4}}\left( t \right) + \mathrm{x{1 4 4 6}}\left( t \right) + \mathrm{x{1 4 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 5}}\left( t \right) \ \frac{dx{1 4 4 6}(t)}{dt} =& \alpha1 \mathrm{x{4 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 6}}\left( t \right) + \mathrm{x{1 4 1 4}}\left( t \right) + \mathrm{x{1 4 4 5}}\left( t \right) + \mathrm{x{1 4 4 7}}\left( t \right) + \mathrm{x{1 4 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 6}}\left( t \right) \ \frac{dx{1 4 4 7}(t)}{dt} =& \alpha1 \mathrm{x{4 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 7}}\left( t \right) + \mathrm{x{1 4 1 5}}\left( t \right) + \mathrm{x{1 4 4 6}}\left( t \right) + \mathrm{x{1 4 4 8}}\left( t \right) + \mathrm{x{1 4 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 7}}\left( t \right) \ \frac{dx{1 4 4 8}(t)}{dt} =& \alpha1 \mathrm{x{4 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 8}}\left( t \right) + \mathrm{x{1 4 1 6}}\left( t \right) + \mathrm{x{1 4 4 7}}\left( t \right) + \mathrm{x{1 4 4 9}}\left( t \right) + \mathrm{x{1 4 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 8}}\left( t \right) \ \frac{dx{1 4 4 9}(t)}{dt} =& \alpha1 \mathrm{x{4 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 4 9}}\left( t \right) + \mathrm{x{1 4 1 7}}\left( t \right) + \mathrm{x{1 4 4 8}}\left( t \right) + \mathrm{x{1 4 5 0}}\left( t \right) + \mathrm{x{1 4 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 4 9}}\left( t \right) \ \frac{dx{1 4 5 0}(t)}{dt} =& \alpha1 \mathrm{x{4 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 0}}\left( t \right) + \mathrm{x{1 4 1 8}}\left( t \right) + \mathrm{x{1 4 4 9}}\left( t \right) + \mathrm{x{1 4 5 1}}\left( t \right) + \mathrm{x{1 4 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 0}}\left( t \right) \ \frac{dx{1 4 5 1}(t)}{dt} =& \alpha1 \mathrm{x{4 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 1}}\left( t \right) + \mathrm{x{1 4 1 9}}\left( t \right) + \mathrm{x{1 4 5 0}}\left( t \right) + \mathrm{x{1 4 5 2}}\left( t \right) + \mathrm{x{1 4 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 1}}\left( t \right) \ \frac{dx{1 4 5 2}(t)}{dt} =& \alpha1 \mathrm{x{4 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 2}}\left( t \right) + \mathrm{x{1 4 2 0}}\left( t \right) + \mathrm{x{1 4 5 1}}\left( t \right) + \mathrm{x{1 4 5 3}}\left( t \right) + \mathrm{x{1 4 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 2}}\left( t \right) \ \frac{dx{1 4 5 3}(t)}{dt} =& \alpha1 \mathrm{x{4 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 3}}\left( t \right) + \mathrm{x{1 4 2 1}}\left( t \right) + \mathrm{x{1 4 5 2}}\left( t \right) + \mathrm{x{1 4 5 4}}\left( t \right) + \mathrm{x{1 4 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 3}}\left( t \right) \ \frac{dx{1 4 5 4}(t)}{dt} =& \alpha1 \mathrm{x{4 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 4}}\left( t \right) + \mathrm{x{1 4 2 2}}\left( t \right) + \mathrm{x{1 4 5 3}}\left( t \right) + \mathrm{x{1 4 5 5}}\left( t \right) + \mathrm{x{1 4 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 4}}\left( t \right) \ \frac{dx{1 4 5 5}(t)}{dt} =& \alpha1 \mathrm{x{4 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 5}}\left( t \right) + \mathrm{x{1 4 2 3}}\left( t \right) + \mathrm{x{1 4 5 4}}\left( t \right) + \mathrm{x{1 4 5 6}}\left( t \right) + \mathrm{x{1 4 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 5}}\left( t \right) \ \frac{dx{1 4 5 6}(t)}{dt} =& \alpha1 \mathrm{x{4 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 6}}\left( t \right) + \mathrm{x{1 4 2 4}}\left( t \right) + \mathrm{x{1 4 5 5}}\left( t \right) + \mathrm{x{1 4 5 7}}\left( t \right) + \mathrm{x{1 4 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 6}}\left( t \right) \ \frac{dx{1 4 5 7}(t)}{dt} =& \alpha1 \mathrm{x{4 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 7}}\left( t \right) + \mathrm{x{1 4 2 5}}\left( t \right) + \mathrm{x{1 4 5 6}}\left( t \right) + \mathrm{x{1 4 5 8}}\left( t \right) + \mathrm{x{1 4 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 7}}\left( t \right) \ \frac{dx{1 4 5 8}(t)}{dt} =& \alpha1 \mathrm{x{4 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 8}}\left( t \right) + \mathrm{x{1 4 2 6}}\left( t \right) + \mathrm{x{1 4 5 7}}\left( t \right) + \mathrm{x{1 4 5 9}}\left( t \right) + \mathrm{x{1 4 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 8}}\left( t \right) \ \frac{dx{1 4 5 9}(t)}{dt} =& \alpha1 \mathrm{x{4 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 5 9}}\left( t \right) + \mathrm{x{1 4 2 7}}\left( t \right) + \mathrm{x{1 4 5 8}}\left( t \right) + \mathrm{x{1 4 6 0}}\left( t \right) + \mathrm{x{1 4 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 5 9}}\left( t \right) \ \frac{dx{1 4 6 0}(t)}{dt} =& \alpha1 \mathrm{x{4 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 0}}\left( t \right) + \mathrm{x{1 4 2 8}}\left( t \right) + \mathrm{x{1 4 5 9}}\left( t \right) + \mathrm{x{1 4 6 1}}\left( t \right) + \mathrm{x{1 4 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 0}}\left( t \right) \ \frac{dx{1 4 6 1}(t)}{dt} =& \alpha1 \mathrm{x{4 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 1}}\left( t \right) + \mathrm{x{1 4 2 9}}\left( t \right) + \mathrm{x{1 4 6 0}}\left( t \right) + \mathrm{x{1 4 6 2}}\left( t \right) + \mathrm{x{1 4 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 1}}\left( t \right) \ \frac{dx{1 4 6 2}(t)}{dt} =& \alpha1 \mathrm{x{4 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 2}}\left( t \right) + \mathrm{x{1 4 3 0}}\left( t \right) + \mathrm{x{1 4 6 1}}\left( t \right) + \mathrm{x{1 4 6 3}}\left( t \right) + \mathrm{x{1 4 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 2}}\left( t \right) \ \frac{dx{1 4 6 3}(t)}{dt} =& \alpha1 \mathrm{x{4 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 3}}\left( t \right) + \mathrm{x{1 4 3 1}}\left( t \right) + \mathrm{x{1 4 6 2}}\left( t \right) + \mathrm{x{1 4 6 4}}\left( t \right) + \mathrm{x{1 4 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 3}}\left( t \right) \ \frac{dx{1 4 6 4}(t)}{dt} =& \alpha1 \mathrm{x{4 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 4}}\left( t \right) + \mathrm{x{1 4 3 2}}\left( t \right) + \mathrm{x{1 4 6 3}}\left( t \right) + \mathrm{x{1 4 6 5}}\left( t \right) + \mathrm{x{1 4 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 4}}\left( t \right) \ \frac{dx{1 4 6 5}(t)}{dt} =& \alpha1 \mathrm{x{4 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 5}}\left( t \right) + \mathrm{x{1 4 3 3}}\left( t \right) + \mathrm{x{1 4 6 4}}\left( t \right) + \mathrm{x{1 4 6 6}}\left( t \right) + \mathrm{x{1 4 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 5}}\left( t \right) \ \frac{dx{1 4 6 6}(t)}{dt} =& \alpha1 \mathrm{x{4 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 6}}\left( t \right) + \mathrm{x{1 4 3 4}}\left( t \right) + \mathrm{x{1 4 6 5}}\left( t \right) + \mathrm{x{1 4 6 7}}\left( t \right) + \mathrm{x{1 4 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 6}}\left( t \right) \ \frac{dx{1 4 6 7}(t)}{dt} =& \alpha1 \mathrm{x{4 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 7}}\left( t \right) + \mathrm{x{1 4 3 5}}\left( t \right) + \mathrm{x{1 4 6 6}}\left( t \right) + \mathrm{x{1 4 6 8}}\left( t \right) + \mathrm{x{1 4 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 7}}\left( t \right) \ \frac{dx{1 4 6 8}(t)}{dt} =& \alpha1 \mathrm{x{4 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 8}}\left( t \right) + \mathrm{x{1 4 3 6}}\left( t \right) + \mathrm{x{1 4 6 7}}\left( t \right) + \mathrm{x{1 4 6 9}}\left( t \right) + \mathrm{x{1 5 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 8}}\left( t \right) \ \frac{dx{1 4 6 9}(t)}{dt} =& \alpha1 \mathrm{x{4 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 6 9}}\left( t \right) + \mathrm{x{1 4 3 7}}\left( t \right) + \mathrm{x{1 4 6 8}}\left( t \right) + \mathrm{x{1 4 7 0}}\left( t \right) + \mathrm{x{1 5 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 6 9}}\left( t \right) \ \frac{dx{1 4 7 0}(t)}{dt} =& \alpha1 \mathrm{x{4 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 0}}\left( t \right) + \mathrm{x{1 4 3 8}}\left( t \right) + \mathrm{x{1 4 6 9}}\left( t \right) + \mathrm{x{1 4 7 1}}\left( t \right) + \mathrm{x{1 5 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 0}}\left( t \right) \ \frac{dx{1 4 7 1}(t)}{dt} =& \alpha1 \mathrm{x{4 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 1}}\left( t \right) + \mathrm{x{1 4 3 9}}\left( t \right) + \mathrm{x{1 4 7 0}}\left( t \right) + \mathrm{x{1 4 7 2}}\left( t \right) + \mathrm{x{1 5 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 1}}\left( t \right) \ \frac{dx{1 4 7 2}(t)}{dt} =& \alpha1 \mathrm{x{4 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 2}}\left( t \right) + \mathrm{x{1 4 4 0}}\left( t \right) + \mathrm{x{1 4 4 1}}\left( t \right) + \mathrm{x{1 4 7 1}}\left( t \right) + \mathrm{x{1 5 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 2}}\left( t \right) \ \frac{dx{1 4 7 3}(t)}{dt} =& \alpha1 \mathrm{x{4 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 3}}\left( t \right) + \mathrm{x{1 4 4 1}}\left( t \right) + \mathrm{x{1 4 7 4}}\left( t \right) + \mathrm{x{1 5 0 4}}\left( t \right) + \mathrm{x{1 5 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 3}}\left( t \right) \ \frac{dx{1 4 7 4}(t)}{dt} =& \alpha1 \mathrm{x{4 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 4}}\left( t \right) + \mathrm{x{1 4 4 2}}\left( t \right) + \mathrm{x{1 4 7 3}}\left( t \right) + \mathrm{x{1 4 7 5}}\left( t \right) + \mathrm{x{1 5 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 4}}\left( t \right) \ \frac{dx{1 4 7 5}(t)}{dt} =& \alpha1 \mathrm{x{4 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 5}}\left( t \right) + \mathrm{x{1 4 4 3}}\left( t \right) + \mathrm{x{1 4 7 4}}\left( t \right) + \mathrm{x{1 4 7 6}}\left( t \right) + \mathrm{x{1 5 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 5}}\left( t \right) \ \frac{dx{1 4 7 6}(t)}{dt} =& \alpha1 \mathrm{x{4 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 6}}\left( t \right) + \mathrm{x{1 4 4 4}}\left( t \right) + \mathrm{x{1 4 7 5}}\left( t \right) + \mathrm{x{1 4 7 7}}\left( t \right) + \mathrm{x{1 5 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 6}}\left( t \right) \ \frac{dx{1 4 7 7}(t)}{dt} =& \alpha1 \mathrm{x{4 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 7}}\left( t \right) + \mathrm{x{1 4 4 5}}\left( t \right) + \mathrm{x{1 4 7 6}}\left( t \right) + \mathrm{x{1 4 7 8}}\left( t \right) + \mathrm{x{1 5 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 7}}\left( t \right) \ \frac{dx{1 4 7 8}(t)}{dt} =& \alpha1 \mathrm{x{4 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 8}}\left( t \right) + \mathrm{x{1 4 4 6}}\left( t \right) + \mathrm{x{1 4 7 7}}\left( t \right) + \mathrm{x{1 4 7 9}}\left( t \right) + \mathrm{x{1 5 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 8}}\left( t \right) \ \frac{dx{1 4 7 9}(t)}{dt} =& \alpha1 \mathrm{x{4 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 7 9}}\left( t \right) + \mathrm{x{1 4 4 7}}\left( t \right) + \mathrm{x{1 4 7 8}}\left( t \right) + \mathrm{x{1 4 8 0}}\left( t \right) + \mathrm{x{1 5 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 7 9}}\left( t \right) \ \frac{dx{1 4 8 0}(t)}{dt} =& \alpha1 \mathrm{x{4 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 0}}\left( t \right) + \mathrm{x{1 4 4 8}}\left( t \right) + \mathrm{x{1 4 7 9}}\left( t \right) + \mathrm{x{1 4 8 1}}\left( t \right) + \mathrm{x{1 5 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 0}}\left( t \right) \ \frac{dx{1 4 8 1}(t)}{dt} =& \alpha1 \mathrm{x{4 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 1}}\left( t \right) + \mathrm{x{1 4 4 9}}\left( t \right) + \mathrm{x{1 4 8 0}}\left( t \right) + \mathrm{x{1 4 8 2}}\left( t \right) + \mathrm{x{1 5 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 1}}\left( t \right) \ \frac{dx{1 4 8 2}(t)}{dt} =& \alpha1 \mathrm{x{4 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 2}}\left( t \right) + \mathrm{x{1 4 5 0}}\left( t \right) + \mathrm{x{1 4 8 1}}\left( t \right) + \mathrm{x{1 4 8 3}}\left( t \right) + \mathrm{x{1 5 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 2}}\left( t \right) \ \frac{dx{1 4 8 3}(t)}{dt} =& \alpha1 \mathrm{x{4 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 3}}\left( t \right) + \mathrm{x{1 4 5 1}}\left( t \right) + \mathrm{x{1 4 8 2}}\left( t \right) + \mathrm{x{1 4 8 4}}\left( t \right) + \mathrm{x{1 5 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 3}}\left( t \right) \ \frac{dx{1 4 8 4}(t)}{dt} =& \alpha1 \mathrm{x{4 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 4}}\left( t \right) + \mathrm{x{1 4 5 2}}\left( t \right) + \mathrm{x{1 4 8 3}}\left( t \right) + \mathrm{x{1 4 8 5}}\left( t \right) + \mathrm{x{1 5 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 4}}\left( t \right) \ \frac{dx{1 4 8 5}(t)}{dt} =& \alpha1 \mathrm{x{4 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 5}}\left( t \right) + \mathrm{x{1 4 5 3}}\left( t \right) + \mathrm{x{1 4 8 4}}\left( t \right) + \mathrm{x{1 4 8 6}}\left( t \right) + \mathrm{x{1 5 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 5}}\left( t \right) \ \frac{dx{1 4 8 6}(t)}{dt} =& \alpha1 \mathrm{x{4 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 6}}\left( t \right) + \mathrm{x{1 4 5 4}}\left( t \right) + \mathrm{x{1 4 8 5}}\left( t \right) + \mathrm{x{1 4 8 7}}\left( t \right) + \mathrm{x{1 5 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 6}}\left( t \right) \ \frac{dx{1 4 8 7}(t)}{dt} =& \alpha1 \mathrm{x{4 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 7}}\left( t \right) + \mathrm{x{1 4 5 5}}\left( t \right) + \mathrm{x{1 4 8 6}}\left( t \right) + \mathrm{x{1 4 8 8}}\left( t \right) + \mathrm{x{1 5 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 7}}\left( t \right) \ \frac{dx{1 4 8 8}(t)}{dt} =& \alpha1 \mathrm{x{4 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 8}}\left( t \right) + \mathrm{x{1 4 5 6}}\left( t \right) + \mathrm{x{1 4 8 7}}\left( t \right) + \mathrm{x{1 4 8 9}}\left( t \right) + \mathrm{x{1 5 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 8}}\left( t \right) \ \frac{dx{1 4 8 9}(t)}{dt} =& \alpha1 \mathrm{x{4 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 8 9}}\left( t \right) + \mathrm{x{1 4 5 7}}\left( t \right) + \mathrm{x{1 4 8 8}}\left( t \right) + \mathrm{x{1 4 9 0}}\left( t \right) + \mathrm{x{1 5 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 8 9}}\left( t \right) \ \frac{dx{1 4 9 0}(t)}{dt} =& \alpha1 \mathrm{x{4 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 0}}\left( t \right) + \mathrm{x{1 4 5 8}}\left( t \right) + \mathrm{x{1 4 8 9}}\left( t \right) + \mathrm{x{1 4 9 1}}\left( t \right) + \mathrm{x{1 5 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 0}}\left( t \right) \ \frac{dx{1 4 9 1}(t)}{dt} =& \alpha1 \mathrm{x{4 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 1}}\left( t \right) + \mathrm{x{1 4 5 9}}\left( t \right) + \mathrm{x{1 4 9 0}}\left( t \right) + \mathrm{x{1 4 9 2}}\left( t \right) + \mathrm{x{1 5 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 1}}\left( t \right) \ \frac{dx{1 4 9 2}(t)}{dt} =& \alpha1 \mathrm{x{4 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 2}}\left( t \right) + \mathrm{x{1 4 6 0}}\left( t \right) + \mathrm{x{1 4 9 1}}\left( t \right) + \mathrm{x{1 4 9 3}}\left( t \right) + \mathrm{x{1 5 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 2}}\left( t \right) \ \frac{dx{1 4 9 3}(t)}{dt} =& \alpha1 \mathrm{x{4 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 3}}\left( t \right) + \mathrm{x{1 4 6 1}}\left( t \right) + \mathrm{x{1 4 9 2}}\left( t \right) + \mathrm{x{1 4 9 4}}\left( t \right) + \mathrm{x{1 5 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 3}}\left( t \right) \ \frac{dx{1 4 9 4}(t)}{dt} =& \alpha1 \mathrm{x{4 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 4}}\left( t \right) + \mathrm{x{1 4 6 2}}\left( t \right) + \mathrm{x{1 4 9 3}}\left( t \right) + \mathrm{x{1 4 9 5}}\left( t \right) + \mathrm{x{1 5 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 4}}\left( t \right) \ \frac{dx{1 4 9 5}(t)}{dt} =& \alpha1 \mathrm{x{4 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 5}}\left( t \right) + \mathrm{x{1 4 6 3}}\left( t \right) + \mathrm{x{1 4 9 4}}\left( t \right) + \mathrm{x{1 4 9 6}}\left( t \right) + \mathrm{x{1 5 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 5}}\left( t \right) \ \frac{dx{1 4 9 6}(t)}{dt} =& \alpha1 \mathrm{x{4 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 6}}\left( t \right) + \mathrm{x{1 4 6 4}}\left( t \right) + \mathrm{x{1 4 9 5}}\left( t \right) + \mathrm{x{1 4 9 7}}\left( t \right) + \mathrm{x{1 5 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 6}}\left( t \right) \ \frac{dx{1 4 9 7}(t)}{dt} =& \alpha1 \mathrm{x{4 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 7}}\left( t \right) + \mathrm{x{1 4 6 5}}\left( t \right) + \mathrm{x{1 4 9 6}}\left( t \right) + \mathrm{x{1 4 9 8}}\left( t \right) + \mathrm{x{1 5 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 7}}\left( t \right) \ \frac{dx{1 4 9 8}(t)}{dt} =& \alpha1 \mathrm{x{4 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 8}}\left( t \right) + \mathrm{x{1 4 6 6}}\left( t \right) + \mathrm{x{1 4 9 7}}\left( t \right) + \mathrm{x{1 4 9 9}}\left( t \right) + \mathrm{x{1 5 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 8}}\left( t \right) \ \frac{dx{1 4 9 9}(t)}{dt} =& \alpha1 \mathrm{x{4 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 4 9 9}}\left( t \right) + \mathrm{x{1 4 6 7}}\left( t \right) + \mathrm{x{1 4 9 8}}\left( t \right) + \mathrm{x{1 5 0 0}}\left( t \right) + \mathrm{x{1 5 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 4 9 9}}\left( t \right) \ \frac{dx{1 5 0 0}(t)}{dt} =& \alpha1 \mathrm{x{4 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 0}}\left( t \right) + \mathrm{x{1 4 6 8}}\left( t \right) + \mathrm{x{1 4 9 9}}\left( t \right) + \mathrm{x{1 5 0 1}}\left( t \right) + \mathrm{x{1 5 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 0}}\left( t \right) \ \frac{dx{1 5 0 1}(t)}{dt} =& \alpha1 \mathrm{x{4 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 1}}\left( t \right) + \mathrm{x{1 4 6 9}}\left( t \right) + \mathrm{x{1 5 0 0}}\left( t \right) + \mathrm{x{1 5 0 2}}\left( t \right) + \mathrm{x{1 5 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 1}}\left( t \right) \ \frac{dx{1 5 0 2}(t)}{dt} =& \alpha1 \mathrm{x{4 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 2}}\left( t \right) + \mathrm{x{1 4 7 0}}\left( t \right) + \mathrm{x{1 5 0 1}}\left( t \right) + \mathrm{x{1 5 0 3}}\left( t \right) + \mathrm{x{1 5 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 2}}\left( t \right) \ \frac{dx{1 5 0 3}(t)}{dt} =& \alpha1 \mathrm{x{4 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 3}}\left( t \right) + \mathrm{x{1 4 7 1}}\left( t \right) + \mathrm{x{1 5 0 2}}\left( t \right) + \mathrm{x{1 5 0 4}}\left( t \right) + \mathrm{x{1 5 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 3}}\left( t \right) \ \frac{dx{1 5 0 4}(t)}{dt} =& \alpha1 \mathrm{x{4 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 4}}\left( t \right) + \mathrm{x{1 4 7 2}}\left( t \right) + \mathrm{x{1 4 7 3}}\left( t \right) + \mathrm{x{1 5 0 3}}\left( t \right) + \mathrm{x{1 5 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 4}}\left( t \right) \ \frac{dx{1 5 0 5}(t)}{dt} =& \alpha1 \mathrm{x{4 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 5}}\left( t \right) + \mathrm{x{1 4 7 3}}\left( t \right) + \mathrm{x{1 5 0 6}}\left( t \right) + \mathrm{x{1 5 3 6}}\left( t \right) + \mathrm{x{1 5 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 5}}\left( t \right) \ \frac{dx{1 5 0 6}(t)}{dt} =& \alpha1 \mathrm{x{4 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 6}}\left( t \right) + \mathrm{x{1 4 7 4}}\left( t \right) + \mathrm{x{1 5 0 5}}\left( t \right) + \mathrm{x{1 5 0 7}}\left( t \right) + \mathrm{x{1 5 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 6}}\left( t \right) \ \frac{dx{1 5 0 7}(t)}{dt} =& \alpha1 \mathrm{x{4 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 7}}\left( t \right) + \mathrm{x{1 4 7 5}}\left( t \right) + \mathrm{x{1 5 0 6}}\left( t \right) + \mathrm{x{1 5 0 8}}\left( t \right) + \mathrm{x{1 5 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 7}}\left( t \right) \ \frac{dx{1 5 0 8}(t)}{dt} =& \alpha1 \mathrm{x{4 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 8}}\left( t \right) + \mathrm{x{1 4 7 6}}\left( t \right) + \mathrm{x{1 5 0 7}}\left( t \right) + \mathrm{x{1 5 0 9}}\left( t \right) + \mathrm{x{1 5 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 8}}\left( t \right) \ \frac{dx{1 5 0 9}(t)}{dt} =& \alpha1 \mathrm{x{4 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 0 9}}\left( t \right) + \mathrm{x{1 4 7 7}}\left( t \right) + \mathrm{x{1 5 0 8}}\left( t \right) + \mathrm{x{1 5 1 0}}\left( t \right) + \mathrm{x{1 5 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 0 9}}\left( t \right) \ \frac{dx{1 5 1 0}(t)}{dt} =& \alpha1 \mathrm{x{4 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 0}}\left( t \right) + \mathrm{x{1 4 7 8}}\left( t \right) + \mathrm{x{1 5 0 9}}\left( t \right) + \mathrm{x{1 5 1 1}}\left( t \right) + \mathrm{x{1 5 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 0}}\left( t \right) \ \frac{dx{1 5 1 1}(t)}{dt} =& \alpha1 \mathrm{x{4 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 1}}\left( t \right) + \mathrm{x{1 4 7 9}}\left( t \right) + \mathrm{x{1 5 1 0}}\left( t \right) + \mathrm{x{1 5 1 2}}\left( t \right) + \mathrm{x{1 5 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 1}}\left( t \right) \ \frac{dx{1 5 1 2}(t)}{dt} =& \alpha1 \mathrm{x{4 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 2}}\left( t \right) + \mathrm{x{1 4 8 0}}\left( t \right) + \mathrm{x{1 5 1 1}}\left( t \right) + \mathrm{x{1 5 1 3}}\left( t \right) + \mathrm{x{1 5 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 2}}\left( t \right) \ \frac{dx{1 5 1 3}(t)}{dt} =& \alpha1 \mathrm{x{4 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 3}}\left( t \right) + \mathrm{x{1 4 8 1}}\left( t \right) + \mathrm{x{1 5 1 2}}\left( t \right) + \mathrm{x{1 5 1 4}}\left( t \right) + \mathrm{x{1 5 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 3}}\left( t \right) \ \frac{dx{1 5 1 4}(t)}{dt} =& \alpha1 \mathrm{x{4 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 4}}\left( t \right) + \mathrm{x{1 4 8 2}}\left( t \right) + \mathrm{x{1 5 1 3}}\left( t \right) + \mathrm{x{1 5 1 5}}\left( t \right) + \mathrm{x{1 5 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 4}}\left( t \right) \ \frac{dx{1 5 1 5}(t)}{dt} =& \alpha1 \mathrm{x{4 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 5}}\left( t \right) + \mathrm{x{1 4 8 3}}\left( t \right) + \mathrm{x{1 5 1 4}}\left( t \right) + \mathrm{x{1 5 1 6}}\left( t \right) + \mathrm{x{1 5 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 5}}\left( t \right) \ \frac{dx{1 5 1 6}(t)}{dt} =& \alpha1 \mathrm{x{4 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 6}}\left( t \right) + \mathrm{x{1 4 8 4}}\left( t \right) + \mathrm{x{1 5 1 5}}\left( t \right) + \mathrm{x{1 5 1 7}}\left( t \right) + \mathrm{x{1 5 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 6}}\left( t \right) \ \frac{dx{1 5 1 7}(t)}{dt} =& \alpha1 \mathrm{x{4 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 7}}\left( t \right) + \mathrm{x{1 4 8 5}}\left( t \right) + \mathrm{x{1 5 1 6}}\left( t \right) + \mathrm{x{1 5 1 8}}\left( t \right) + \mathrm{x{1 5 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 7}}\left( t \right) \ \frac{dx{1 5 1 8}(t)}{dt} =& \alpha1 \mathrm{x{4 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 8}}\left( t \right) + \mathrm{x{1 4 8 6}}\left( t \right) + \mathrm{x{1 5 1 7}}\left( t \right) + \mathrm{x{1 5 1 9}}\left( t \right) + \mathrm{x{1 5 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 8}}\left( t \right) \ \frac{dx{1 5 1 9}(t)}{dt} =& \alpha1 \mathrm{x{4 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 1 9}}\left( t \right) + \mathrm{x{1 4 8 7}}\left( t \right) + \mathrm{x{1 5 1 8}}\left( t \right) + \mathrm{x{1 5 2 0}}\left( t \right) + \mathrm{x{1 5 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 1 9}}\left( t \right) \ \frac{dx{1 5 2 0}(t)}{dt} =& \alpha1 \mathrm{x{4 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 0}}\left( t \right) + \mathrm{x{1 4 8 8}}\left( t \right) + \mathrm{x{1 5 1 9}}\left( t \right) + \mathrm{x{1 5 2 1}}\left( t \right) + \mathrm{x{1 5 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 0}}\left( t \right) \ \frac{dx{1 5 2 1}(t)}{dt} =& \alpha1 \mathrm{x{4 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 1}}\left( t \right) + \mathrm{x{1 4 8 9}}\left( t \right) + \mathrm{x{1 5 2 0}}\left( t \right) + \mathrm{x{1 5 2 2}}\left( t \right) + \mathrm{x{1 5 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 1}}\left( t \right) \ \frac{dx{1 5 2 2}(t)}{dt} =& \alpha1 \mathrm{x{4 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 2}}\left( t \right) + \mathrm{x{1 4 9 0}}\left( t \right) + \mathrm{x{1 5 2 1}}\left( t \right) + \mathrm{x{1 5 2 3}}\left( t \right) + \mathrm{x{1 5 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 2}}\left( t \right) \ \frac{dx{1 5 2 3}(t)}{dt} =& \alpha1 \mathrm{x{4 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 3}}\left( t \right) + \mathrm{x{1 4 9 1}}\left( t \right) + \mathrm{x{1 5 2 2}}\left( t \right) + \mathrm{x{1 5 2 4}}\left( t \right) + \mathrm{x{1 5 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{4 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 3}}\left( t \right) \ \frac{dx{1 5 2 4}(t)}{dt} =& \alpha1 \mathrm{x{5 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 4}}\left( t \right) + \mathrm{x{1 4 9 2}}\left( t \right) + \mathrm{x{1 5 2 3}}\left( t \right) + \mathrm{x{1 5 2 5}}\left( t \right) + \mathrm{x{1 5 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 4}}\left( t \right) \ \frac{dx{1 5 2 5}(t)}{dt} =& \alpha1 \mathrm{x{5 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 5}}\left( t \right) + \mathrm{x{1 4 9 3}}\left( t \right) + \mathrm{x{1 5 2 4}}\left( t \right) + \mathrm{x{1 5 2 6}}\left( t \right) + \mathrm{x{1 5 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 5}}\left( t \right) \ \frac{dx{1 5 2 6}(t)}{dt} =& \alpha1 \mathrm{x{5 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 6}}\left( t \right) + \mathrm{x{1 4 9 4}}\left( t \right) + \mathrm{x{1 5 2 5}}\left( t \right) + \mathrm{x{1 5 2 7}}\left( t \right) + \mathrm{x{1 5 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 6}}\left( t \right) \ \frac{dx{1 5 2 7}(t)}{dt} =& \alpha1 \mathrm{x{5 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 7}}\left( t \right) + \mathrm{x{1 4 9 5}}\left( t \right) + \mathrm{x{1 5 2 6}}\left( t \right) + \mathrm{x{1 5 2 8}}\left( t \right) + \mathrm{x{1 5 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 7}}\left( t \right) \ \frac{dx{1 5 2 8}(t)}{dt} =& \alpha1 \mathrm{x{5 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 8}}\left( t \right) + \mathrm{x{1 4 9 6}}\left( t \right) + \mathrm{x{1 5 2 7}}\left( t \right) + \mathrm{x{1 5 2 9}}\left( t \right) + \mathrm{x{1 5 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 8}}\left( t \right) \ \frac{dx{1 5 2 9}(t)}{dt} =& \alpha1 \mathrm{x{5 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 2 9}}\left( t \right) + \mathrm{x{1 4 9 7}}\left( t \right) + \mathrm{x{1 5 2 8}}\left( t \right) + \mathrm{x{1 5 3 0}}\left( t \right) + \mathrm{x{1 5 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 2 9}}\left( t \right) \ \frac{dx{1 5 3 0}(t)}{dt} =& \alpha1 \mathrm{x{5 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 0}}\left( t \right) + \mathrm{x{1 4 9 8}}\left( t \right) + \mathrm{x{1 5 2 9}}\left( t \right) + \mathrm{x{1 5 3 1}}\left( t \right) + \mathrm{x{1 5 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 0}}\left( t \right) \ \frac{dx{1 5 3 1}(t)}{dt} =& \alpha1 \mathrm{x{5 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 1}}\left( t \right) + \mathrm{x{1 4 9 9}}\left( t \right) + \mathrm{x{1 5 3 0}}\left( t \right) + \mathrm{x{1 5 3 2}}\left( t \right) + \mathrm{x{1 5 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 1}}\left( t \right) \ \frac{dx{1 5 3 2}(t)}{dt} =& \alpha1 \mathrm{x{5 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 2}}\left( t \right) + \mathrm{x{1 5 0 0}}\left( t \right) + \mathrm{x{1 5 3 1}}\left( t \right) + \mathrm{x{1 5 3 3}}\left( t \right) + \mathrm{x{1 5 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 2}}\left( t \right) \ \frac{dx{1 5 3 3}(t)}{dt} =& \alpha1 \mathrm{x{5 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 3}}\left( t \right) + \mathrm{x{1 5 0 1}}\left( t \right) + \mathrm{x{1 5 3 2}}\left( t \right) + \mathrm{x{1 5 3 4}}\left( t \right) + \mathrm{x{1 5 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 3}}\left( t \right) \ \frac{dx{1 5 3 4}(t)}{dt} =& \alpha1 \mathrm{x{5 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 4}}\left( t \right) + \mathrm{x{1 5 0 2}}\left( t \right) + \mathrm{x{1 5 3 3}}\left( t \right) + \mathrm{x{1 5 3 5}}\left( t \right) + \mathrm{x{1 5 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 4}}\left( t \right) \ \frac{dx{1 5 3 5}(t)}{dt} =& \alpha1 \mathrm{x{5 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 5}}\left( t \right) + \mathrm{x{1 5 0 3}}\left( t \right) + \mathrm{x{1 5 3 4}}\left( t \right) + \mathrm{x{1 5 3 6}}\left( t \right) + \mathrm{x{1 5 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 5}}\left( t \right) \ \frac{dx{1 5 3 6}(t)}{dt} =& \alpha1 \mathrm{x{5 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 6}}\left( t \right) + \mathrm{x{1 5 0 4}}\left( t \right) + \mathrm{x{1 5 0 5}}\left( t \right) + \mathrm{x{1 5 3 5}}\left( t \right) + \mathrm{x{1 5 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 6}}\left( t \right) \ \frac{dx{1 5 3 7}(t)}{dt} =& \alpha1 \mathrm{x{5 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 7}}\left( t \right) + \mathrm{x{1 5 0 5}}\left( t \right) + \mathrm{x{1 5 3 8}}\left( t \right) + \mathrm{x{1 5 6 8}}\left( t \right) + \mathrm{x{1 5 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 7}}\left( t \right) \ \frac{dx{1 5 3 8}(t)}{dt} =& \alpha1 \mathrm{x{5 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 8}}\left( t \right) + \mathrm{x{1 5 0 6}}\left( t \right) + \mathrm{x{1 5 3 7}}\left( t \right) + \mathrm{x{1 5 3 9}}\left( t \right) + \mathrm{x{1 5 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 8}}\left( t \right) \ \frac{dx{1 5 3 9}(t)}{dt} =& \alpha1 \mathrm{x{5 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 3 9}}\left( t \right) + \mathrm{x{1 5 0 7}}\left( t \right) + \mathrm{x{1 5 3 8}}\left( t \right) + \mathrm{x{1 5 4 0}}\left( t \right) + \mathrm{x{1 5 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 3 9}}\left( t \right) \ \frac{dx{1 5 4 0}(t)}{dt} =& \alpha1 \mathrm{x{5 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 0}}\left( t \right) + \mathrm{x{1 5 0 8}}\left( t \right) + \mathrm{x{1 5 3 9}}\left( t \right) + \mathrm{x{1 5 4 1}}\left( t \right) + \mathrm{x{1 5 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 0}}\left( t \right) \ \frac{dx{1 5 4 1}(t)}{dt} =& \alpha1 \mathrm{x{5 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 1}}\left( t \right) + \mathrm{x{1 5 0 9}}\left( t \right) + \mathrm{x{1 5 4 0}}\left( t \right) + \mathrm{x{1 5 4 2}}\left( t \right) + \mathrm{x{1 5 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 1}}\left( t \right) \ \frac{dx{1 5 4 2}(t)}{dt} =& \alpha1 \mathrm{x{5 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 2}}\left( t \right) + \mathrm{x{1 5 1 0}}\left( t \right) + \mathrm{x{1 5 4 1}}\left( t \right) + \mathrm{x{1 5 4 3}}\left( t \right) + \mathrm{x{1 5 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 2}}\left( t \right) \ \frac{dx{1 5 4 3}(t)}{dt} =& \alpha1 \mathrm{x{5 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 3}}\left( t \right) + \mathrm{x{1 5 1 1}}\left( t \right) + \mathrm{x{1 5 4 2}}\left( t \right) + \mathrm{x{1 5 4 4}}\left( t \right) + \mathrm{x{1 5 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 3}}\left( t \right) \ \frac{dx{1 5 4 4}(t)}{dt} =& \alpha1 \mathrm{x{5 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 4}}\left( t \right) + \mathrm{x{1 5 1 2}}\left( t \right) + \mathrm{x{1 5 4 3}}\left( t \right) + \mathrm{x{1 5 4 5}}\left( t \right) + \mathrm{x{1 5 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 4}}\left( t \right) \ \frac{dx{1 5 4 5}(t)}{dt} =& \alpha1 \mathrm{x{5 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 5}}\left( t \right) + \mathrm{x{1 5 1 3}}\left( t \right) + \mathrm{x{1 5 4 4}}\left( t \right) + \mathrm{x{1 5 4 6}}\left( t \right) + \mathrm{x{1 5 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 5}}\left( t \right) \ \frac{dx{1 5 4 6}(t)}{dt} =& \alpha1 \mathrm{x{5 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 6}}\left( t \right) + \mathrm{x{1 5 1 4}}\left( t \right) + \mathrm{x{1 5 4 5}}\left( t \right) + \mathrm{x{1 5 4 7}}\left( t \right) + \mathrm{x{1 5 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 6}}\left( t \right) \ \frac{dx{1 5 4 7}(t)}{dt} =& \alpha1 \mathrm{x{5 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 7}}\left( t \right) + \mathrm{x{1 5 1 5}}\left( t \right) + \mathrm{x{1 5 4 6}}\left( t \right) + \mathrm{x{1 5 4 8}}\left( t \right) + \mathrm{x{1 5 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 7}}\left( t \right) \ \frac{dx{1 5 4 8}(t)}{dt} =& \alpha1 \mathrm{x{5 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 8}}\left( t \right) + \mathrm{x{1 5 1 6}}\left( t \right) + \mathrm{x{1 5 4 7}}\left( t \right) + \mathrm{x{1 5 4 9}}\left( t \right) + \mathrm{x{1 5 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 8}}\left( t \right) \ \frac{dx{1 5 4 9}(t)}{dt} =& \alpha1 \mathrm{x{5 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 4 9}}\left( t \right) + \mathrm{x{1 5 1 7}}\left( t \right) + \mathrm{x{1 5 4 8}}\left( t \right) + \mathrm{x{1 5 5 0}}\left( t \right) + \mathrm{x{1 5 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 4 9}}\left( t \right) \ \frac{dx{1 5 5 0}(t)}{dt} =& \alpha1 \mathrm{x{5 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 0}}\left( t \right) + \mathrm{x{1 5 1 8}}\left( t \right) + \mathrm{x{1 5 4 9}}\left( t \right) + \mathrm{x{1 5 5 1}}\left( t \right) + \mathrm{x{1 5 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 0}}\left( t \right) \ \frac{dx{1 5 5 1}(t)}{dt} =& \alpha1 \mathrm{x{5 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 1}}\left( t \right) + \mathrm{x{1 5 1 9}}\left( t \right) + \mathrm{x{1 5 5 0}}\left( t \right) + \mathrm{x{1 5 5 2}}\left( t \right) + \mathrm{x{1 5 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 1}}\left( t \right) \ \frac{dx{1 5 5 2}(t)}{dt} =& \alpha1 \mathrm{x{5 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 2}}\left( t \right) + \mathrm{x{1 5 2 0}}\left( t \right) + \mathrm{x{1 5 5 1}}\left( t \right) + \mathrm{x{1 5 5 3}}\left( t \right) + \mathrm{x{1 5 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 2}}\left( t \right) \ \frac{dx{1 5 5 3}(t)}{dt} =& \alpha1 \mathrm{x{5 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 3}}\left( t \right) + \mathrm{x{1 5 2 1}}\left( t \right) + \mathrm{x{1 5 5 2}}\left( t \right) + \mathrm{x{1 5 5 4}}\left( t \right) + \mathrm{x{1 5 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 3}}\left( t \right) \ \frac{dx{1 5 5 4}(t)}{dt} =& \alpha1 \mathrm{x{5 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 4}}\left( t \right) + \mathrm{x{1 5 2 2}}\left( t \right) + \mathrm{x{1 5 5 3}}\left( t \right) + \mathrm{x{1 5 5 5}}\left( t \right) + \mathrm{x{1 5 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 4}}\left( t \right) \ \frac{dx{1 5 5 5}(t)}{dt} =& \alpha1 \mathrm{x{5 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 5}}\left( t \right) + \mathrm{x{1 5 2 3}}\left( t \right) + \mathrm{x{1 5 5 4}}\left( t \right) + \mathrm{x{1 5 5 6}}\left( t \right) + \mathrm{x{1 5 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 5}}\left( t \right) \ \frac{dx{1 5 5 6}(t)}{dt} =& \alpha1 \mathrm{x{5 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 6}}\left( t \right) + \mathrm{x{1 5 2 4}}\left( t \right) + \mathrm{x{1 5 5 5}}\left( t \right) + \mathrm{x{1 5 5 7}}\left( t \right) + \mathrm{x{1 5 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 6}}\left( t \right) \ \frac{dx{1 5 5 7}(t)}{dt} =& \alpha1 \mathrm{x{5 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 7}}\left( t \right) + \mathrm{x{1 5 2 5}}\left( t \right) + \mathrm{x{1 5 5 6}}\left( t \right) + \mathrm{x{1 5 5 8}}\left( t \right) + \mathrm{x{1 5 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 7}}\left( t \right) \ \frac{dx{1 5 5 8}(t)}{dt} =& \alpha1 \mathrm{x{5 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 8}}\left( t \right) + \mathrm{x{1 5 2 6}}\left( t \right) + \mathrm{x{1 5 5 7}}\left( t \right) + \mathrm{x{1 5 5 9}}\left( t \right) + \mathrm{x{1 5 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 8}}\left( t \right) \ \frac{dx{1 5 5 9}(t)}{dt} =& \alpha1 \mathrm{x{5 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 5 9}}\left( t \right) + \mathrm{x{1 5 2 7}}\left( t \right) + \mathrm{x{1 5 5 8}}\left( t \right) + \mathrm{x{1 5 6 0}}\left( t \right) + \mathrm{x{1 5 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 5 9}}\left( t \right) \ \frac{dx{1 5 6 0}(t)}{dt} =& \alpha1 \mathrm{x{5 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 0}}\left( t \right) + \mathrm{x{1 5 2 8}}\left( t \right) + \mathrm{x{1 5 5 9}}\left( t \right) + \mathrm{x{1 5 6 1}}\left( t \right) + \mathrm{x{1 5 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 0}}\left( t \right) \ \frac{dx{1 5 6 1}(t)}{dt} =& \alpha1 \mathrm{x{5 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 1}}\left( t \right) + \mathrm{x{1 5 2 9}}\left( t \right) + \mathrm{x{1 5 6 0}}\left( t \right) + \mathrm{x{1 5 6 2}}\left( t \right) + \mathrm{x{1 5 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 1}}\left( t \right) \ \frac{dx{1 5 6 2}(t)}{dt} =& \alpha1 \mathrm{x{5 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 2}}\left( t \right) + \mathrm{x{1 5 3 0}}\left( t \right) + \mathrm{x{1 5 6 1}}\left( t \right) + \mathrm{x{1 5 6 3}}\left( t \right) + \mathrm{x{1 5 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 2}}\left( t \right) \ \frac{dx{1 5 6 3}(t)}{dt} =& \alpha1 \mathrm{x{5 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 3}}\left( t \right) + \mathrm{x{1 5 3 1}}\left( t \right) + \mathrm{x{1 5 6 2}}\left( t \right) + \mathrm{x{1 5 6 4}}\left( t \right) + \mathrm{x{1 5 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 3}}\left( t \right) \ \frac{dx{1 5 6 4}(t)}{dt} =& \alpha1 \mathrm{x{5 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 4}}\left( t \right) + \mathrm{x{1 5 3 2}}\left( t \right) + \mathrm{x{1 5 6 3}}\left( t \right) + \mathrm{x{1 5 6 5}}\left( t \right) + \mathrm{x{1 5 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 4}}\left( t \right) \ \frac{dx{1 5 6 5}(t)}{dt} =& \alpha1 \mathrm{x{5 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 5}}\left( t \right) + \mathrm{x{1 5 3 3}}\left( t \right) + \mathrm{x{1 5 6 4}}\left( t \right) + \mathrm{x{1 5 6 6}}\left( t \right) + \mathrm{x{1 5 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 5}}\left( t \right) \ \frac{dx{1 5 6 6}(t)}{dt} =& \alpha1 \mathrm{x{5 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 6}}\left( t \right) + \mathrm{x{1 5 3 4}}\left( t \right) + \mathrm{x{1 5 6 5}}\left( t \right) + \mathrm{x{1 5 6 7}}\left( t \right) + \mathrm{x{1 5 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 6}}\left( t \right) \ \frac{dx{1 5 6 7}(t)}{dt} =& \alpha1 \mathrm{x{5 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 7}}\left( t \right) + \mathrm{x{1 5 3 5}}\left( t \right) + \mathrm{x{1 5 6 6}}\left( t \right) + \mathrm{x{1 5 6 8}}\left( t \right) + \mathrm{x{1 5 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 7}}\left( t \right) \ \frac{dx{1 5 6 8}(t)}{dt} =& \alpha1 \mathrm{x{5 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 8}}\left( t \right) + \mathrm{x{1 5 3 6}}\left( t \right) + \mathrm{x{1 5 3 7}}\left( t \right) + \mathrm{x{1 5 6 7}}\left( t \right) + \mathrm{x{1 6 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 8}}\left( t \right) \ \frac{dx{1 5 6 9}(t)}{dt} =& \alpha1 \mathrm{x{5 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 6 9}}\left( t \right) + \mathrm{x{1 5 3 7}}\left( t \right) + \mathrm{x{1 5 7 0}}\left( t \right) + \mathrm{x{1 6 0 0}}\left( t \right) + \mathrm{x{1 6 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 6 9}}\left( t \right) \ \frac{dx{1 5 7 0}(t)}{dt} =& \alpha1 \mathrm{x{5 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 0}}\left( t \right) + \mathrm{x{1 5 3 8}}\left( t \right) + \mathrm{x{1 5 6 9}}\left( t \right) + \mathrm{x{1 5 7 1}}\left( t \right) + \mathrm{x{1 6 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 0}}\left( t \right) \ \frac{dx{1 5 7 1}(t)}{dt} =& \alpha1 \mathrm{x{5 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 1}}\left( t \right) + \mathrm{x{1 5 3 9}}\left( t \right) + \mathrm{x{1 5 7 0}}\left( t \right) + \mathrm{x{1 5 7 2}}\left( t \right) + \mathrm{x{1 6 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 1}}\left( t \right) \ \frac{dx{1 5 7 2}(t)}{dt} =& \alpha1 \mathrm{x{5 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 2}}\left( t \right) + \mathrm{x{1 5 4 0}}\left( t \right) + \mathrm{x{1 5 7 1}}\left( t \right) + \mathrm{x{1 5 7 3}}\left( t \right) + \mathrm{x{1 6 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 2}}\left( t \right) \ \frac{dx{1 5 7 3}(t)}{dt} =& \alpha1 \mathrm{x{5 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 3}}\left( t \right) + \mathrm{x{1 5 4 1}}\left( t \right) + \mathrm{x{1 5 7 2}}\left( t \right) + \mathrm{x{1 5 7 4}}\left( t \right) + \mathrm{x{1 6 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 3}}\left( t \right) \ \frac{dx{1 5 7 4}(t)}{dt} =& \alpha1 \mathrm{x{5 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 4}}\left( t \right) + \mathrm{x{1 5 4 2}}\left( t \right) + \mathrm{x{1 5 7 3}}\left( t \right) + \mathrm{x{1 5 7 5}}\left( t \right) + \mathrm{x{1 6 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 4}}\left( t \right) \ \frac{dx{1 5 7 5}(t)}{dt} =& \alpha1 \mathrm{x{5 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 5}}\left( t \right) + \mathrm{x{1 5 4 3}}\left( t \right) + \mathrm{x{1 5 7 4}}\left( t \right) + \mathrm{x{1 5 7 6}}\left( t \right) + \mathrm{x{1 6 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 5}}\left( t \right) \ \frac{dx{1 5 7 6}(t)}{dt} =& \alpha1 \mathrm{x{5 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 6}}\left( t \right) + \mathrm{x{1 5 4 4}}\left( t \right) + \mathrm{x{1 5 7 5}}\left( t \right) + \mathrm{x{1 5 7 7}}\left( t \right) + \mathrm{x{1 6 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 6}}\left( t \right) \ \frac{dx{1 5 7 7}(t)}{dt} =& \alpha1 \mathrm{x{5 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 7}}\left( t \right) + \mathrm{x{1 5 4 5}}\left( t \right) + \mathrm{x{1 5 7 6}}\left( t \right) + \mathrm{x{1 5 7 8}}\left( t \right) + \mathrm{x{1 6 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 7}}\left( t \right) \ \frac{dx{1 5 7 8}(t)}{dt} =& \alpha1 \mathrm{x{5 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 8}}\left( t \right) + \mathrm{x{1 5 4 6}}\left( t \right) + \mathrm{x{1 5 7 7}}\left( t \right) + \mathrm{x{1 5 7 9}}\left( t \right) + \mathrm{x{1 6 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 8}}\left( t \right) \ \frac{dx{1 5 7 9}(t)}{dt} =& \alpha1 \mathrm{x{5 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 7 9}}\left( t \right) + \mathrm{x{1 5 4 7}}\left( t \right) + \mathrm{x{1 5 7 8}}\left( t \right) + \mathrm{x{1 5 8 0}}\left( t \right) + \mathrm{x{1 6 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 7 9}}\left( t \right) \ \frac{dx{1 5 8 0}(t)}{dt} =& \alpha1 \mathrm{x{5 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 0}}\left( t \right) + \mathrm{x{1 5 4 8}}\left( t \right) + \mathrm{x{1 5 7 9}}\left( t \right) + \mathrm{x{1 5 8 1}}\left( t \right) + \mathrm{x{1 6 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 0}}\left( t \right) \ \frac{dx{1 5 8 1}(t)}{dt} =& \alpha1 \mathrm{x{5 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 1}}\left( t \right) + \mathrm{x{1 5 4 9}}\left( t \right) + \mathrm{x{1 5 8 0}}\left( t \right) + \mathrm{x{1 5 8 2}}\left( t \right) + \mathrm{x{1 6 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 1}}\left( t \right) \ \frac{dx{1 5 8 2}(t)}{dt} =& \alpha1 \mathrm{x{5 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 2}}\left( t \right) + \mathrm{x{1 5 5 0}}\left( t \right) + \mathrm{x{1 5 8 1}}\left( t \right) + \mathrm{x{1 5 8 3}}\left( t \right) + \mathrm{x{1 6 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 2}}\left( t \right) \ \frac{dx{1 5 8 3}(t)}{dt} =& \alpha1 \mathrm{x{5 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 3}}\left( t \right) + \mathrm{x{1 5 5 1}}\left( t \right) + \mathrm{x{1 5 8 2}}\left( t \right) + \mathrm{x{1 5 8 4}}\left( t \right) + \mathrm{x{1 6 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 3}}\left( t \right) \ \frac{dx{1 5 8 4}(t)}{dt} =& \alpha1 \mathrm{x{5 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 4}}\left( t \right) + \mathrm{x{1 5 5 2}}\left( t \right) + \mathrm{x{1 5 8 3}}\left( t \right) + \mathrm{x{1 5 8 5}}\left( t \right) + \mathrm{x{1 6 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 4}}\left( t \right) \ \frac{dx{1 5 8 5}(t)}{dt} =& \alpha1 \mathrm{x{5 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 5}}\left( t \right) + \mathrm{x{1 5 5 3}}\left( t \right) + \mathrm{x{1 5 8 4}}\left( t \right) + \mathrm{x{1 5 8 6}}\left( t \right) + \mathrm{x{1 6 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 5}}\left( t \right) \ \frac{dx{1 5 8 6}(t)}{dt} =& \alpha1 \mathrm{x{5 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 6}}\left( t \right) + \mathrm{x{1 5 5 4}}\left( t \right) + \mathrm{x{1 5 8 5}}\left( t \right) + \mathrm{x{1 5 8 7}}\left( t \right) + \mathrm{x{1 6 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 6}}\left( t \right) \ \frac{dx{1 5 8 7}(t)}{dt} =& \alpha1 \mathrm{x{5 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 7}}\left( t \right) + \mathrm{x{1 5 5 5}}\left( t \right) + \mathrm{x{1 5 8 6}}\left( t \right) + \mathrm{x{1 5 8 8}}\left( t \right) + \mathrm{x{1 6 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 7}}\left( t \right) \ \frac{dx{1 5 8 8}(t)}{dt} =& \alpha1 \mathrm{x{5 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 8}}\left( t \right) + \mathrm{x{1 5 5 6}}\left( t \right) + \mathrm{x{1 5 8 7}}\left( t \right) + \mathrm{x{1 5 8 9}}\left( t \right) + \mathrm{x{1 6 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 8}}\left( t \right) \ \frac{dx{1 5 8 9}(t)}{dt} =& \alpha1 \mathrm{x{5 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 8 9}}\left( t \right) + \mathrm{x{1 5 5 7}}\left( t \right) + \mathrm{x{1 5 8 8}}\left( t \right) + \mathrm{x{1 5 9 0}}\left( t \right) + \mathrm{x{1 6 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 8 9}}\left( t \right) \ \frac{dx{1 5 9 0}(t)}{dt} =& \alpha1 \mathrm{x{5 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 0}}\left( t \right) + \mathrm{x{1 5 5 8}}\left( t \right) + \mathrm{x{1 5 8 9}}\left( t \right) + \mathrm{x{1 5 9 1}}\left( t \right) + \mathrm{x{1 6 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 0}}\left( t \right) \ \frac{dx{1 5 9 1}(t)}{dt} =& \alpha1 \mathrm{x{5 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 1}}\left( t \right) + \mathrm{x{1 5 5 9}}\left( t \right) + \mathrm{x{1 5 9 0}}\left( t \right) + \mathrm{x{1 5 9 2}}\left( t \right) + \mathrm{x{1 6 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 1}}\left( t \right) \ \frac{dx{1 5 9 2}(t)}{dt} =& \alpha1 \mathrm{x{5 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 2}}\left( t \right) + \mathrm{x{1 5 6 0}}\left( t \right) + \mathrm{x{1 5 9 1}}\left( t \right) + \mathrm{x{1 5 9 3}}\left( t \right) + \mathrm{x{1 6 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 2}}\left( t \right) \ \frac{dx{1 5 9 3}(t)}{dt} =& \alpha1 \mathrm{x{5 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 3}}\left( t \right) + \mathrm{x{1 5 6 1}}\left( t \right) + \mathrm{x{1 5 9 2}}\left( t \right) + \mathrm{x{1 5 9 4}}\left( t \right) + \mathrm{x{1 6 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 3}}\left( t \right) \ \frac{dx{1 5 9 4}(t)}{dt} =& \alpha1 \mathrm{x{5 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 4}}\left( t \right) + \mathrm{x{1 5 6 2}}\left( t \right) + \mathrm{x{1 5 9 3}}\left( t \right) + \mathrm{x{1 5 9 5}}\left( t \right) + \mathrm{x{1 6 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 4}}\left( t \right) \ \frac{dx{1 5 9 5}(t)}{dt} =& \alpha1 \mathrm{x{5 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 5}}\left( t \right) + \mathrm{x{1 5 6 3}}\left( t \right) + \mathrm{x{1 5 9 4}}\left( t \right) + \mathrm{x{1 5 9 6}}\left( t \right) + \mathrm{x{1 6 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 5}}\left( t \right) \ \frac{dx{1 5 9 6}(t)}{dt} =& \alpha1 \mathrm{x{5 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 6}}\left( t \right) + \mathrm{x{1 5 6 4}}\left( t \right) + \mathrm{x{1 5 9 5}}\left( t \right) + \mathrm{x{1 5 9 7}}\left( t \right) + \mathrm{x{1 6 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 6}}\left( t \right) \ \frac{dx{1 5 9 7}(t)}{dt} =& \alpha1 \mathrm{x{5 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 7}}\left( t \right) + \mathrm{x{1 5 6 5}}\left( t \right) + \mathrm{x{1 5 9 6}}\left( t \right) + \mathrm{x{1 5 9 8}}\left( t \right) + \mathrm{x{1 6 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 7}}\left( t \right) \ \frac{dx{1 5 9 8}(t)}{dt} =& \alpha1 \mathrm{x{5 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 8}}\left( t \right) + \mathrm{x{1 5 6 6}}\left( t \right) + \mathrm{x{1 5 9 7}}\left( t \right) + \mathrm{x{1 5 9 9}}\left( t \right) + \mathrm{x{1 6 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 8}}\left( t \right) \ \frac{dx{1 5 9 9}(t)}{dt} =& \alpha1 \mathrm{x{5 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 5 9 9}}\left( t \right) + \mathrm{x{1 5 6 7}}\left( t \right) + \mathrm{x{1 5 9 8}}\left( t \right) + \mathrm{x{1 6 0 0}}\left( t \right) + \mathrm{x{1 6 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 5 9 9}}\left( t \right) \ \frac{dx{1 6 0 0}(t)}{dt} =& \alpha1 \mathrm{x{5 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 0}}\left( t \right) + \mathrm{x{1 5 6 8}}\left( t \right) + \mathrm{x{1 5 6 9}}\left( t \right) + \mathrm{x{1 5 9 9}}\left( t \right) + \mathrm{x{1 6 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 0}}\left( t \right) \ \frac{dx{1 6 0 1}(t)}{dt} =& \alpha1 \mathrm{x{5 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 1}}\left( t \right) + \mathrm{x{1 5 6 9}}\left( t \right) + \mathrm{x{1 6 0 2}}\left( t \right) + \mathrm{x{1 6 3 2}}\left( t \right) + \mathrm{x{1 6 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 1}}\left( t \right) \ \frac{dx{1 6 0 2}(t)}{dt} =& \alpha1 \mathrm{x{5 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 2}}\left( t \right) + \mathrm{x{1 5 7 0}}\left( t \right) + \mathrm{x{1 6 0 1}}\left( t \right) + \mathrm{x{1 6 0 3}}\left( t \right) + \mathrm{x{1 6 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 2}}\left( t \right) \ \frac{dx{1 6 0 3}(t)}{dt} =& \alpha1 \mathrm{x{5 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 3}}\left( t \right) + \mathrm{x{1 5 7 1}}\left( t \right) + \mathrm{x{1 6 0 2}}\left( t \right) + \mathrm{x{1 6 0 4}}\left( t \right) + \mathrm{x{1 6 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 3}}\left( t \right) \ \frac{dx{1 6 0 4}(t)}{dt} =& \alpha1 \mathrm{x{5 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 4}}\left( t \right) + \mathrm{x{1 5 7 2}}\left( t \right) + \mathrm{x{1 6 0 3}}\left( t \right) + \mathrm{x{1 6 0 5}}\left( t \right) + \mathrm{x{1 6 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 4}}\left( t \right) \ \frac{dx{1 6 0 5}(t)}{dt} =& \alpha1 \mathrm{x{5 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 5}}\left( t \right) + \mathrm{x{1 5 7 3}}\left( t \right) + \mathrm{x{1 6 0 4}}\left( t \right) + \mathrm{x{1 6 0 6}}\left( t \right) + \mathrm{x{1 6 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 5}}\left( t \right) \ \frac{dx{1 6 0 6}(t)}{dt} =& \alpha1 \mathrm{x{5 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 6}}\left( t \right) + \mathrm{x{1 5 7 4}}\left( t \right) + \mathrm{x{1 6 0 5}}\left( t \right) + \mathrm{x{1 6 0 7}}\left( t \right) + \mathrm{x{1 6 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 6}}\left( t \right) \ \frac{dx{1 6 0 7}(t)}{dt} =& \alpha1 \mathrm{x{5 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 7}}\left( t \right) + \mathrm{x{1 5 7 5}}\left( t \right) + \mathrm{x{1 6 0 6}}\left( t \right) + \mathrm{x{1 6 0 8}}\left( t \right) + \mathrm{x{1 6 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 7}}\left( t \right) \ \frac{dx{1 6 0 8}(t)}{dt} =& \alpha1 \mathrm{x{5 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 8}}\left( t \right) + \mathrm{x{1 5 7 6}}\left( t \right) + \mathrm{x{1 6 0 7}}\left( t \right) + \mathrm{x{1 6 0 9}}\left( t \right) + \mathrm{x{1 6 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 8}}\left( t \right) \ \frac{dx{1 6 0 9}(t)}{dt} =& \alpha1 \mathrm{x{5 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 0 9}}\left( t \right) + \mathrm{x{1 5 7 7}}\left( t \right) + \mathrm{x{1 6 0 8}}\left( t \right) + \mathrm{x{1 6 1 0}}\left( t \right) + \mathrm{x{1 6 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 0 9}}\left( t \right) \ \frac{dx{1 6 1 0}(t)}{dt} =& \alpha1 \mathrm{x{5 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 0}}\left( t \right) + \mathrm{x{1 5 7 8}}\left( t \right) + \mathrm{x{1 6 0 9}}\left( t \right) + \mathrm{x{1 6 1 1}}\left( t \right) + \mathrm{x{1 6 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 0}}\left( t \right) \ \frac{dx{1 6 1 1}(t)}{dt} =& \alpha1 \mathrm{x{5 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 1}}\left( t \right) + \mathrm{x{1 5 7 9}}\left( t \right) + \mathrm{x{1 6 1 0}}\left( t \right) + \mathrm{x{1 6 1 2}}\left( t \right) + \mathrm{x{1 6 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 1}}\left( t \right) \ \frac{dx{1 6 1 2}(t)}{dt} =& \alpha1 \mathrm{x{5 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 2}}\left( t \right) + \mathrm{x{1 5 8 0}}\left( t \right) + \mathrm{x{1 6 1 1}}\left( t \right) + \mathrm{x{1 6 1 3}}\left( t \right) + \mathrm{x{1 6 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 2}}\left( t \right) \ \frac{dx{1 6 1 3}(t)}{dt} =& \alpha1 \mathrm{x{5 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 3}}\left( t \right) + \mathrm{x{1 5 8 1}}\left( t \right) + \mathrm{x{1 6 1 2}}\left( t \right) + \mathrm{x{1 6 1 4}}\left( t \right) + \mathrm{x{1 6 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 3}}\left( t \right) \ \frac{dx{1 6 1 4}(t)}{dt} =& \alpha1 \mathrm{x{5 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 4}}\left( t \right) + \mathrm{x{1 5 8 2}}\left( t \right) + \mathrm{x{1 6 1 3}}\left( t \right) + \mathrm{x{1 6 1 5}}\left( t \right) + \mathrm{x{1 6 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 4}}\left( t \right) \ \frac{dx{1 6 1 5}(t)}{dt} =& \alpha1 \mathrm{x{5 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 5}}\left( t \right) + \mathrm{x{1 5 8 3}}\left( t \right) + \mathrm{x{1 6 1 4}}\left( t \right) + \mathrm{x{1 6 1 6}}\left( t \right) + \mathrm{x{1 6 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 5}}\left( t \right) \ \frac{dx{1 6 1 6}(t)}{dt} =& \alpha1 \mathrm{x{5 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 6}}\left( t \right) + \mathrm{x{1 5 8 4}}\left( t \right) + \mathrm{x{1 6 1 5}}\left( t \right) + \mathrm{x{1 6 1 7}}\left( t \right) + \mathrm{x{1 6 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 6}}\left( t \right) \ \frac{dx{1 6 1 7}(t)}{dt} =& \alpha1 \mathrm{x{5 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 7}}\left( t \right) + \mathrm{x{1 5 8 5}}\left( t \right) + \mathrm{x{1 6 1 6}}\left( t \right) + \mathrm{x{1 6 1 8}}\left( t \right) + \mathrm{x{1 6 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 7}}\left( t \right) \ \frac{dx{1 6 1 8}(t)}{dt} =& \alpha1 \mathrm{x{5 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 8}}\left( t \right) + \mathrm{x{1 5 8 6}}\left( t \right) + \mathrm{x{1 6 1 7}}\left( t \right) + \mathrm{x{1 6 1 9}}\left( t \right) + \mathrm{x{1 6 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 8}}\left( t \right) \ \frac{dx{1 6 1 9}(t)}{dt} =& \alpha1 \mathrm{x{5 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 1 9}}\left( t \right) + \mathrm{x{1 5 8 7}}\left( t \right) + \mathrm{x{1 6 1 8}}\left( t \right) + \mathrm{x{1 6 2 0}}\left( t \right) + \mathrm{x{1 6 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 1 9}}\left( t \right) \ \frac{dx{1 6 2 0}(t)}{dt} =& \alpha1 \mathrm{x{5 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 0}}\left( t \right) + \mathrm{x{1 5 8 8}}\left( t \right) + \mathrm{x{1 6 1 9}}\left( t \right) + \mathrm{x{1 6 2 1}}\left( t \right) + \mathrm{x{1 6 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 0}}\left( t \right) \ \frac{dx{1 6 2 1}(t)}{dt} =& \alpha1 \mathrm{x{5 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 1}}\left( t \right) + \mathrm{x{1 5 8 9}}\left( t \right) + \mathrm{x{1 6 2 0}}\left( t \right) + \mathrm{x{1 6 2 2}}\left( t \right) + \mathrm{x{1 6 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 1}}\left( t \right) \ \frac{dx{1 6 2 2}(t)}{dt} =& \alpha1 \mathrm{x{5 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 2}}\left( t \right) + \mathrm{x{1 5 9 0}}\left( t \right) + \mathrm{x{1 6 2 1}}\left( t \right) + \mathrm{x{1 6 2 3}}\left( t \right) + \mathrm{x{1 6 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 2}}\left( t \right) \ \frac{dx{1 6 2 3}(t)}{dt} =& \alpha1 \mathrm{x{5 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 3}}\left( t \right) + \mathrm{x{1 5 9 1}}\left( t \right) + \mathrm{x{1 6 2 2}}\left( t \right) + \mathrm{x{1 6 2 4}}\left( t \right) + \mathrm{x{1 6 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{5 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 3}}\left( t \right) \ \frac{dx{1 6 2 4}(t)}{dt} =& \alpha1 \mathrm{x{6 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 4}}\left( t \right) + \mathrm{x{1 5 9 2}}\left( t \right) + \mathrm{x{1 6 2 3}}\left( t \right) + \mathrm{x{1 6 2 5}}\left( t \right) + \mathrm{x{1 6 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 4}}\left( t \right) \ \frac{dx{1 6 2 5}(t)}{dt} =& \alpha1 \mathrm{x{6 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 5}}\left( t \right) + \mathrm{x{1 5 9 3}}\left( t \right) + \mathrm{x{1 6 2 4}}\left( t \right) + \mathrm{x{1 6 2 6}}\left( t \right) + \mathrm{x{1 6 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 5}}\left( t \right) \ \frac{dx{1 6 2 6}(t)}{dt} =& \alpha1 \mathrm{x{6 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 6}}\left( t \right) + \mathrm{x{1 5 9 4}}\left( t \right) + \mathrm{x{1 6 2 5}}\left( t \right) + \mathrm{x{1 6 2 7}}\left( t \right) + \mathrm{x{1 6 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 6}}\left( t \right) \ \frac{dx{1 6 2 7}(t)}{dt} =& \alpha1 \mathrm{x{6 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 7}}\left( t \right) + \mathrm{x{1 5 9 5}}\left( t \right) + \mathrm{x{1 6 2 6}}\left( t \right) + \mathrm{x{1 6 2 8}}\left( t \right) + \mathrm{x{1 6 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 7}}\left( t \right) \ \frac{dx{1 6 2 8}(t)}{dt} =& \alpha1 \mathrm{x{6 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 8}}\left( t \right) + \mathrm{x{1 5 9 6}}\left( t \right) + \mathrm{x{1 6 2 7}}\left( t \right) + \mathrm{x{1 6 2 9}}\left( t \right) + \mathrm{x{1 6 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 8}}\left( t \right) \ \frac{dx{1 6 2 9}(t)}{dt} =& \alpha1 \mathrm{x{6 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 2 9}}\left( t \right) + \mathrm{x{1 5 9 7}}\left( t \right) + \mathrm{x{1 6 2 8}}\left( t \right) + \mathrm{x{1 6 3 0}}\left( t \right) + \mathrm{x{1 6 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 2 9}}\left( t \right) \ \frac{dx{1 6 3 0}(t)}{dt} =& \alpha1 \mathrm{x{6 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 0}}\left( t \right) + \mathrm{x{1 5 9 8}}\left( t \right) + \mathrm{x{1 6 2 9}}\left( t \right) + \mathrm{x{1 6 3 1}}\left( t \right) + \mathrm{x{1 6 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 0}}\left( t \right) \ \frac{dx{1 6 3 1}(t)}{dt} =& \alpha1 \mathrm{x{6 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 1}}\left( t \right) + \mathrm{x{1 5 9 9}}\left( t \right) + \mathrm{x{1 6 3 0}}\left( t \right) + \mathrm{x{1 6 3 2}}\left( t \right) + \mathrm{x{1 6 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 1}}\left( t \right) \ \frac{dx{1 6 3 2}(t)}{dt} =& \alpha1 \mathrm{x{6 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 2}}\left( t \right) + \mathrm{x{1 6 0 0}}\left( t \right) + \mathrm{x{1 6 0 1}}\left( t \right) + \mathrm{x{1 6 3 1}}\left( t \right) + \mathrm{x{1 6 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 2}}\left( t \right) \ \frac{dx{1 6 3 3}(t)}{dt} =& \alpha1 \mathrm{x{6 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 3}}\left( t \right) + \mathrm{x{1 6 0 1}}\left( t \right) + \mathrm{x{1 6 3 4}}\left( t \right) + \mathrm{x{1 6 6 4}}\left( t \right) + \mathrm{x{1 6 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 3}}\left( t \right) \ \frac{dx{1 6 3 4}(t)}{dt} =& \alpha1 \mathrm{x{6 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 4}}\left( t \right) + \mathrm{x{1 6 0 2}}\left( t \right) + \mathrm{x{1 6 3 3}}\left( t \right) + \mathrm{x{1 6 3 5}}\left( t \right) + \mathrm{x{1 6 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 4}}\left( t \right) \ \frac{dx{1 6 3 5}(t)}{dt} =& \alpha1 \mathrm{x{6 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 5}}\left( t \right) + \mathrm{x{1 6 0 3}}\left( t \right) + \mathrm{x{1 6 3 4}}\left( t \right) + \mathrm{x{1 6 3 6}}\left( t \right) + \mathrm{x{1 6 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 5}}\left( t \right) \ \frac{dx{1 6 3 6}(t)}{dt} =& \alpha1 \mathrm{x{6 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 6}}\left( t \right) + \mathrm{x{1 6 0 4}}\left( t \right) + \mathrm{x{1 6 3 5}}\left( t \right) + \mathrm{x{1 6 3 7}}\left( t \right) + \mathrm{x{1 6 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 6}}\left( t \right) \ \frac{dx{1 6 3 7}(t)}{dt} =& \alpha1 \mathrm{x{6 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 7}}\left( t \right) + \mathrm{x{1 6 0 5}}\left( t \right) + \mathrm{x{1 6 3 6}}\left( t \right) + \mathrm{x{1 6 3 8}}\left( t \right) + \mathrm{x{1 6 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 7}}\left( t \right) \ \frac{dx{1 6 3 8}(t)}{dt} =& \alpha1 \mathrm{x{6 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 8}}\left( t \right) + \mathrm{x{1 6 0 6}}\left( t \right) + \mathrm{x{1 6 3 7}}\left( t \right) + \mathrm{x{1 6 3 9}}\left( t \right) + \mathrm{x{1 6 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 8}}\left( t \right) \ \frac{dx{1 6 3 9}(t)}{dt} =& \alpha1 \mathrm{x{6 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 3 9}}\left( t \right) + \mathrm{x{1 6 0 7}}\left( t \right) + \mathrm{x{1 6 3 8}}\left( t \right) + \mathrm{x{1 6 4 0}}\left( t \right) + \mathrm{x{1 6 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 3 9}}\left( t \right) \ \frac{dx{1 6 4 0}(t)}{dt} =& \alpha1 \mathrm{x{6 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 0}}\left( t \right) + \mathrm{x{1 6 0 8}}\left( t \right) + \mathrm{x{1 6 3 9}}\left( t \right) + \mathrm{x{1 6 4 1}}\left( t \right) + \mathrm{x{1 6 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 0}}\left( t \right) \ \frac{dx{1 6 4 1}(t)}{dt} =& \alpha1 \mathrm{x{6 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 1}}\left( t \right) + \mathrm{x{1 6 0 9}}\left( t \right) + \mathrm{x{1 6 4 0}}\left( t \right) + \mathrm{x{1 6 4 2}}\left( t \right) + \mathrm{x{1 6 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 1}}\left( t \right) \ \frac{dx{1 6 4 2}(t)}{dt} =& \alpha1 \mathrm{x{6 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 2}}\left( t \right) + \mathrm{x{1 6 1 0}}\left( t \right) + \mathrm{x{1 6 4 1}}\left( t \right) + \mathrm{x{1 6 4 3}}\left( t \right) + \mathrm{x{1 6 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 2}}\left( t \right) \ \frac{dx{1 6 4 3}(t)}{dt} =& \alpha1 \mathrm{x{6 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 3}}\left( t \right) + \mathrm{x{1 6 1 1}}\left( t \right) + \mathrm{x{1 6 4 2}}\left( t \right) + \mathrm{x{1 6 4 4}}\left( t \right) + \mathrm{x{1 6 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 3}}\left( t \right) \ \frac{dx{1 6 4 4}(t)}{dt} =& \alpha1 \mathrm{x{6 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 4}}\left( t \right) + \mathrm{x{1 6 1 2}}\left( t \right) + \mathrm{x{1 6 4 3}}\left( t \right) + \mathrm{x{1 6 4 5}}\left( t \right) + \mathrm{x{1 6 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 4}}\left( t \right) \ \frac{dx{1 6 4 5}(t)}{dt} =& \alpha1 \mathrm{x{6 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 5}}\left( t \right) + \mathrm{x{1 6 1 3}}\left( t \right) + \mathrm{x{1 6 4 4}}\left( t \right) + \mathrm{x{1 6 4 6}}\left( t \right) + \mathrm{x{1 6 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 5}}\left( t \right) \ \frac{dx{1 6 4 6}(t)}{dt} =& \alpha1 \mathrm{x{6 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 6}}\left( t \right) + \mathrm{x{1 6 1 4}}\left( t \right) + \mathrm{x{1 6 4 5}}\left( t \right) + \mathrm{x{1 6 4 7}}\left( t \right) + \mathrm{x{1 6 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 6}}\left( t \right) \ \frac{dx{1 6 4 7}(t)}{dt} =& \alpha1 \mathrm{x{6 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 7}}\left( t \right) + \mathrm{x{1 6 1 5}}\left( t \right) + \mathrm{x{1 6 4 6}}\left( t \right) + \mathrm{x{1 6 4 8}}\left( t \right) + \mathrm{x{1 6 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 7}}\left( t \right) \ \frac{dx{1 6 4 8}(t)}{dt} =& \alpha1 \mathrm{x{6 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 8}}\left( t \right) + \mathrm{x{1 6 1 6}}\left( t \right) + \mathrm{x{1 6 4 7}}\left( t \right) + \mathrm{x{1 6 4 9}}\left( t \right) + \mathrm{x{1 6 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 8}}\left( t \right) \ \frac{dx{1 6 4 9}(t)}{dt} =& \alpha1 \mathrm{x{6 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 4 9}}\left( t \right) + \mathrm{x{1 6 1 7}}\left( t \right) + \mathrm{x{1 6 4 8}}\left( t \right) + \mathrm{x{1 6 5 0}}\left( t \right) + \mathrm{x{1 6 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 4 9}}\left( t \right) \ \frac{dx{1 6 5 0}(t)}{dt} =& \alpha1 \mathrm{x{6 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 0}}\left( t \right) + \mathrm{x{1 6 1 8}}\left( t \right) + \mathrm{x{1 6 4 9}}\left( t \right) + \mathrm{x{1 6 5 1}}\left( t \right) + \mathrm{x{1 6 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 0}}\left( t \right) \ \frac{dx{1 6 5 1}(t)}{dt} =& \alpha1 \mathrm{x{6 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 1}}\left( t \right) + \mathrm{x{1 6 1 9}}\left( t \right) + \mathrm{x{1 6 5 0}}\left( t \right) + \mathrm{x{1 6 5 2}}\left( t \right) + \mathrm{x{1 6 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 1}}\left( t \right) \ \frac{dx{1 6 5 2}(t)}{dt} =& \alpha1 \mathrm{x{6 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 2}}\left( t \right) + \mathrm{x{1 6 2 0}}\left( t \right) + \mathrm{x{1 6 5 1}}\left( t \right) + \mathrm{x{1 6 5 3}}\left( t \right) + \mathrm{x{1 6 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 2}}\left( t \right) \ \frac{dx{1 6 5 3}(t)}{dt} =& \alpha1 \mathrm{x{6 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 3}}\left( t \right) + \mathrm{x{1 6 2 1}}\left( t \right) + \mathrm{x{1 6 5 2}}\left( t \right) + \mathrm{x{1 6 5 4}}\left( t \right) + \mathrm{x{1 6 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 3}}\left( t \right) \ \frac{dx{1 6 5 4}(t)}{dt} =& \alpha1 \mathrm{x{6 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 4}}\left( t \right) + \mathrm{x{1 6 2 2}}\left( t \right) + \mathrm{x{1 6 5 3}}\left( t \right) + \mathrm{x{1 6 5 5}}\left( t \right) + \mathrm{x{1 6 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 4}}\left( t \right) \ \frac{dx{1 6 5 5}(t)}{dt} =& \alpha1 \mathrm{x{6 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 5}}\left( t \right) + \mathrm{x{1 6 2 3}}\left( t \right) + \mathrm{x{1 6 5 4}}\left( t \right) + \mathrm{x{1 6 5 6}}\left( t \right) + \mathrm{x{1 6 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 5}}\left( t \right) \ \frac{dx{1 6 5 6}(t)}{dt} =& \alpha1 \mathrm{x{6 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 6}}\left( t \right) + \mathrm{x{1 6 2 4}}\left( t \right) + \mathrm{x{1 6 5 5}}\left( t \right) + \mathrm{x{1 6 5 7}}\left( t \right) + \mathrm{x{1 6 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 6}}\left( t \right) \ \frac{dx{1 6 5 7}(t)}{dt} =& \alpha1 \mathrm{x{6 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 7}}\left( t \right) + \mathrm{x{1 6 2 5}}\left( t \right) + \mathrm{x{1 6 5 6}}\left( t \right) + \mathrm{x{1 6 5 8}}\left( t \right) + \mathrm{x{1 6 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 7}}\left( t \right) \ \frac{dx{1 6 5 8}(t)}{dt} =& \alpha1 \mathrm{x{6 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 8}}\left( t \right) + \mathrm{x{1 6 2 6}}\left( t \right) + \mathrm{x{1 6 5 7}}\left( t \right) + \mathrm{x{1 6 5 9}}\left( t \right) + \mathrm{x{1 6 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 8}}\left( t \right) \ \frac{dx{1 6 5 9}(t)}{dt} =& \alpha1 \mathrm{x{6 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 5 9}}\left( t \right) + \mathrm{x{1 6 2 7}}\left( t \right) + \mathrm{x{1 6 5 8}}\left( t \right) + \mathrm{x{1 6 6 0}}\left( t \right) + \mathrm{x{1 6 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 5 9}}\left( t \right) \ \frac{dx{1 6 6 0}(t)}{dt} =& \alpha1 \mathrm{x{6 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 0}}\left( t \right) + \mathrm{x{1 6 2 8}}\left( t \right) + \mathrm{x{1 6 5 9}}\left( t \right) + \mathrm{x{1 6 6 1}}\left( t \right) + \mathrm{x{1 6 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 0}}\left( t \right) \ \frac{dx{1 6 6 1}(t)}{dt} =& \alpha1 \mathrm{x{6 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 1}}\left( t \right) + \mathrm{x{1 6 2 9}}\left( t \right) + \mathrm{x{1 6 6 0}}\left( t \right) + \mathrm{x{1 6 6 2}}\left( t \right) + \mathrm{x{1 6 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 1}}\left( t \right) \ \frac{dx{1 6 6 2}(t)}{dt} =& \alpha1 \mathrm{x{6 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 2}}\left( t \right) + \mathrm{x{1 6 3 0}}\left( t \right) + \mathrm{x{1 6 6 1}}\left( t \right) + \mathrm{x{1 6 6 3}}\left( t \right) + \mathrm{x{1 6 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 2}}\left( t \right) \ \frac{dx{1 6 6 3}(t)}{dt} =& \alpha1 \mathrm{x{6 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 3}}\left( t \right) + \mathrm{x{1 6 3 1}}\left( t \right) + \mathrm{x{1 6 6 2}}\left( t \right) + \mathrm{x{1 6 6 4}}\left( t \right) + \mathrm{x{1 6 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 3}}\left( t \right) \ \frac{dx{1 6 6 4}(t)}{dt} =& \alpha1 \mathrm{x{6 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 4}}\left( t \right) + \mathrm{x{1 6 3 2}}\left( t \right) + \mathrm{x{1 6 3 3}}\left( t \right) + \mathrm{x{1 6 6 3}}\left( t \right) + \mathrm{x{1 6 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 4}}\left( t \right) \ \frac{dx{1 6 6 5}(t)}{dt} =& \alpha1 \mathrm{x{6 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 5}}\left( t \right) + \mathrm{x{1 6 3 3}}\left( t \right) + \mathrm{x{1 6 6 6}}\left( t \right) + \mathrm{x{1 6 9 6}}\left( t \right) + \mathrm{x{1 6 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 5}}\left( t \right) \ \frac{dx{1 6 6 6}(t)}{dt} =& \alpha1 \mathrm{x{6 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 6}}\left( t \right) + \mathrm{x{1 6 3 4}}\left( t \right) + \mathrm{x{1 6 6 5}}\left( t \right) + \mathrm{x{1 6 6 7}}\left( t \right) + \mathrm{x{1 6 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 6}}\left( t \right) \ \frac{dx{1 6 6 7}(t)}{dt} =& \alpha1 \mathrm{x{6 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 7}}\left( t \right) + \mathrm{x{1 6 3 5}}\left( t \right) + \mathrm{x{1 6 6 6}}\left( t \right) + \mathrm{x{1 6 6 8}}\left( t \right) + \mathrm{x{1 6 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 7}}\left( t \right) \ \frac{dx{1 6 6 8}(t)}{dt} =& \alpha1 \mathrm{x{6 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 8}}\left( t \right) + \mathrm{x{1 6 3 6}}\left( t \right) + \mathrm{x{1 6 6 7}}\left( t \right) + \mathrm{x{1 6 6 9}}\left( t \right) + \mathrm{x{1 7 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 8}}\left( t \right) \ \frac{dx{1 6 6 9}(t)}{dt} =& \alpha1 \mathrm{x{6 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 6 9}}\left( t \right) + \mathrm{x{1 6 3 7}}\left( t \right) + \mathrm{x{1 6 6 8}}\left( t \right) + \mathrm{x{1 6 7 0}}\left( t \right) + \mathrm{x{1 7 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 6 9}}\left( t \right) \ \frac{dx{1 6 7 0}(t)}{dt} =& \alpha1 \mathrm{x{6 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 0}}\left( t \right) + \mathrm{x{1 6 3 8}}\left( t \right) + \mathrm{x{1 6 6 9}}\left( t \right) + \mathrm{x{1 6 7 1}}\left( t \right) + \mathrm{x{1 7 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 0}}\left( t \right) \ \frac{dx{1 6 7 1}(t)}{dt} =& \alpha1 \mathrm{x{6 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 1}}\left( t \right) + \mathrm{x{1 6 3 9}}\left( t \right) + \mathrm{x{1 6 7 0}}\left( t \right) + \mathrm{x{1 6 7 2}}\left( t \right) + \mathrm{x{1 7 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 1}}\left( t \right) \ \frac{dx{1 6 7 2}(t)}{dt} =& \alpha1 \mathrm{x{6 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 2}}\left( t \right) + \mathrm{x{1 6 4 0}}\left( t \right) + \mathrm{x{1 6 7 1}}\left( t \right) + \mathrm{x{1 6 7 3}}\left( t \right) + \mathrm{x{1 7 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 2}}\left( t \right) \ \frac{dx{1 6 7 3}(t)}{dt} =& \alpha1 \mathrm{x{6 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 3}}\left( t \right) + \mathrm{x{1 6 4 1}}\left( t \right) + \mathrm{x{1 6 7 2}}\left( t \right) + \mathrm{x{1 6 7 4}}\left( t \right) + \mathrm{x{1 7 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 3}}\left( t \right) \ \frac{dx{1 6 7 4}(t)}{dt} =& \alpha1 \mathrm{x{6 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 4}}\left( t \right) + \mathrm{x{1 6 4 2}}\left( t \right) + \mathrm{x{1 6 7 3}}\left( t \right) + \mathrm{x{1 6 7 5}}\left( t \right) + \mathrm{x{1 7 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 4}}\left( t \right) \ \frac{dx{1 6 7 5}(t)}{dt} =& \alpha1 \mathrm{x{6 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 5}}\left( t \right) + \mathrm{x{1 6 4 3}}\left( t \right) + \mathrm{x{1 6 7 4}}\left( t \right) + \mathrm{x{1 6 7 6}}\left( t \right) + \mathrm{x{1 7 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 5}}\left( t \right) \ \frac{dx{1 6 7 6}(t)}{dt} =& \alpha1 \mathrm{x{6 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 6}}\left( t \right) + \mathrm{x{1 6 4 4}}\left( t \right) + \mathrm{x{1 6 7 5}}\left( t \right) + \mathrm{x{1 6 7 7}}\left( t \right) + \mathrm{x{1 7 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 6}}\left( t \right) \ \frac{dx{1 6 7 7}(t)}{dt} =& \alpha1 \mathrm{x{6 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 7}}\left( t \right) + \mathrm{x{1 6 4 5}}\left( t \right) + \mathrm{x{1 6 7 6}}\left( t \right) + \mathrm{x{1 6 7 8}}\left( t \right) + \mathrm{x{1 7 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 7}}\left( t \right) \ \frac{dx{1 6 7 8}(t)}{dt} =& \alpha1 \mathrm{x{6 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 8}}\left( t \right) + \mathrm{x{1 6 4 6}}\left( t \right) + \mathrm{x{1 6 7 7}}\left( t \right) + \mathrm{x{1 6 7 9}}\left( t \right) + \mathrm{x{1 7 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 8}}\left( t \right) \ \frac{dx{1 6 7 9}(t)}{dt} =& \alpha1 \mathrm{x{6 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 7 9}}\left( t \right) + \mathrm{x{1 6 4 7}}\left( t \right) + \mathrm{x{1 6 7 8}}\left( t \right) + \mathrm{x{1 6 8 0}}\left( t \right) + \mathrm{x{1 7 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 7 9}}\left( t \right) \ \frac{dx{1 6 8 0}(t)}{dt} =& \alpha1 \mathrm{x{6 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 0}}\left( t \right) + \mathrm{x{1 6 4 8}}\left( t \right) + \mathrm{x{1 6 7 9}}\left( t \right) + \mathrm{x{1 6 8 1}}\left( t \right) + \mathrm{x{1 7 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 0}}\left( t \right) \ \frac{dx{1 6 8 1}(t)}{dt} =& \alpha1 \mathrm{x{6 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 1}}\left( t \right) + \mathrm{x{1 6 4 9}}\left( t \right) + \mathrm{x{1 6 8 0}}\left( t \right) + \mathrm{x{1 6 8 2}}\left( t \right) + \mathrm{x{1 7 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 1}}\left( t \right) \ \frac{dx{1 6 8 2}(t)}{dt} =& \alpha1 \mathrm{x{6 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 2}}\left( t \right) + \mathrm{x{1 6 5 0}}\left( t \right) + \mathrm{x{1 6 8 1}}\left( t \right) + \mathrm{x{1 6 8 3}}\left( t \right) + \mathrm{x{1 7 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 2}}\left( t \right) \ \frac{dx{1 6 8 3}(t)}{dt} =& \alpha1 \mathrm{x{6 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 3}}\left( t \right) + \mathrm{x{1 6 5 1}}\left( t \right) + \mathrm{x{1 6 8 2}}\left( t \right) + \mathrm{x{1 6 8 4}}\left( t \right) + \mathrm{x{1 7 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 3}}\left( t \right) \ \frac{dx{1 6 8 4}(t)}{dt} =& \alpha1 \mathrm{x{6 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 4}}\left( t \right) + \mathrm{x{1 6 5 2}}\left( t \right) + \mathrm{x{1 6 8 3}}\left( t \right) + \mathrm{x{1 6 8 5}}\left( t \right) + \mathrm{x{1 7 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 4}}\left( t \right) \ \frac{dx{1 6 8 5}(t)}{dt} =& \alpha1 \mathrm{x{6 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 5}}\left( t \right) + \mathrm{x{1 6 5 3}}\left( t \right) + \mathrm{x{1 6 8 4}}\left( t \right) + \mathrm{x{1 6 8 6}}\left( t \right) + \mathrm{x{1 7 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 5}}\left( t \right) \ \frac{dx{1 6 8 6}(t)}{dt} =& \alpha1 \mathrm{x{6 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 6}}\left( t \right) + \mathrm{x{1 6 5 4}}\left( t \right) + \mathrm{x{1 6 8 5}}\left( t \right) + \mathrm{x{1 6 8 7}}\left( t \right) + \mathrm{x{1 7 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 6}}\left( t \right) \ \frac{dx{1 6 8 7}(t)}{dt} =& \alpha1 \mathrm{x{6 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 7}}\left( t \right) + \mathrm{x{1 6 5 5}}\left( t \right) + \mathrm{x{1 6 8 6}}\left( t \right) + \mathrm{x{1 6 8 8}}\left( t \right) + \mathrm{x{1 7 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 7}}\left( t \right) \ \frac{dx{1 6 8 8}(t)}{dt} =& \alpha1 \mathrm{x{6 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 8}}\left( t \right) + \mathrm{x{1 6 5 6}}\left( t \right) + \mathrm{x{1 6 8 7}}\left( t \right) + \mathrm{x{1 6 8 9}}\left( t \right) + \mathrm{x{1 7 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 8}}\left( t \right) \ \frac{dx{1 6 8 9}(t)}{dt} =& \alpha1 \mathrm{x{6 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 8 9}}\left( t \right) + \mathrm{x{1 6 5 7}}\left( t \right) + \mathrm{x{1 6 8 8}}\left( t \right) + \mathrm{x{1 6 9 0}}\left( t \right) + \mathrm{x{1 7 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 8 9}}\left( t \right) \ \frac{dx{1 6 9 0}(t)}{dt} =& \alpha1 \mathrm{x{6 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 0}}\left( t \right) + \mathrm{x{1 6 5 8}}\left( t \right) + \mathrm{x{1 6 8 9}}\left( t \right) + \mathrm{x{1 6 9 1}}\left( t \right) + \mathrm{x{1 7 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 0}}\left( t \right) \ \frac{dx{1 6 9 1}(t)}{dt} =& \alpha1 \mathrm{x{6 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 1}}\left( t \right) + \mathrm{x{1 6 5 9}}\left( t \right) + \mathrm{x{1 6 9 0}}\left( t \right) + \mathrm{x{1 6 9 2}}\left( t \right) + \mathrm{x{1 7 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 1}}\left( t \right) \ \frac{dx{1 6 9 2}(t)}{dt} =& \alpha1 \mathrm{x{6 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 2}}\left( t \right) + \mathrm{x{1 6 6 0}}\left( t \right) + \mathrm{x{1 6 9 1}}\left( t \right) + \mathrm{x{1 6 9 3}}\left( t \right) + \mathrm{x{1 7 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 2}}\left( t \right) \ \frac{dx{1 6 9 3}(t)}{dt} =& \alpha1 \mathrm{x{6 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 3}}\left( t \right) + \mathrm{x{1 6 6 1}}\left( t \right) + \mathrm{x{1 6 9 2}}\left( t \right) + \mathrm{x{1 6 9 4}}\left( t \right) + \mathrm{x{1 7 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 3}}\left( t \right) \ \frac{dx{1 6 9 4}(t)}{dt} =& \alpha1 \mathrm{x{6 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 4}}\left( t \right) + \mathrm{x{1 6 6 2}}\left( t \right) + \mathrm{x{1 6 9 3}}\left( t \right) + \mathrm{x{1 6 9 5}}\left( t \right) + \mathrm{x{1 7 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 4}}\left( t \right) \ \frac{dx{1 6 9 5}(t)}{dt} =& \alpha1 \mathrm{x{6 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 5}}\left( t \right) + \mathrm{x{1 6 6 3}}\left( t \right) + \mathrm{x{1 6 9 4}}\left( t \right) + \mathrm{x{1 6 9 6}}\left( t \right) + \mathrm{x{1 7 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 5}}\left( t \right) \ \frac{dx{1 6 9 6}(t)}{dt} =& \alpha1 \mathrm{x{6 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 6}}\left( t \right) + \mathrm{x{1 6 6 4}}\left( t \right) + \mathrm{x{1 6 6 5}}\left( t \right) + \mathrm{x{1 6 9 5}}\left( t \right) + \mathrm{x{1 7 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 6}}\left( t \right) \ \frac{dx{1 6 9 7}(t)}{dt} =& \alpha1 \mathrm{x{6 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 7}}\left( t \right) + \mathrm{x{1 6 6 5}}\left( t \right) + \mathrm{x{1 6 9 8}}\left( t \right) + \mathrm{x{1 7 2 8}}\left( t \right) + \mathrm{x{1 7 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 7}}\left( t \right) \ \frac{dx{1 6 9 8}(t)}{dt} =& \alpha1 \mathrm{x{6 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 8}}\left( t \right) + \mathrm{x{1 6 6 6}}\left( t \right) + \mathrm{x{1 6 9 7}}\left( t \right) + \mathrm{x{1 6 9 9}}\left( t \right) + \mathrm{x{1 7 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 8}}\left( t \right) \ \frac{dx{1 6 9 9}(t)}{dt} =& \alpha1 \mathrm{x{6 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 6 9 9}}\left( t \right) + \mathrm{x{1 6 6 7}}\left( t \right) + \mathrm{x{1 6 9 8}}\left( t \right) + \mathrm{x{1 7 0 0}}\left( t \right) + \mathrm{x{1 7 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 6 9 9}}\left( t \right) \ \frac{dx{1 7 0 0}(t)}{dt} =& \alpha1 \mathrm{x{6 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 0}}\left( t \right) + \mathrm{x{1 6 6 8}}\left( t \right) + \mathrm{x{1 6 9 9}}\left( t \right) + \mathrm{x{1 7 0 1}}\left( t \right) + \mathrm{x{1 7 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 0}}\left( t \right) \ \frac{dx{1 7 0 1}(t)}{dt} =& \alpha1 \mathrm{x{6 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 1}}\left( t \right) + \mathrm{x{1 6 6 9}}\left( t \right) + \mathrm{x{1 7 0 0}}\left( t \right) + \mathrm{x{1 7 0 2}}\left( t \right) + \mathrm{x{1 7 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 1}}\left( t \right) \ \frac{dx{1 7 0 2}(t)}{dt} =& \alpha1 \mathrm{x{6 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 2}}\left( t \right) + \mathrm{x{1 6 7 0}}\left( t \right) + \mathrm{x{1 7 0 1}}\left( t \right) + \mathrm{x{1 7 0 3}}\left( t \right) + \mathrm{x{1 7 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 2}}\left( t \right) \ \frac{dx{1 7 0 3}(t)}{dt} =& \alpha1 \mathrm{x{6 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 3}}\left( t \right) + \mathrm{x{1 6 7 1}}\left( t \right) + \mathrm{x{1 7 0 2}}\left( t \right) + \mathrm{x{1 7 0 4}}\left( t \right) + \mathrm{x{1 7 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 3}}\left( t \right) \ \frac{dx{1 7 0 4}(t)}{dt} =& \alpha1 \mathrm{x{6 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 4}}\left( t \right) + \mathrm{x{1 6 7 2}}\left( t \right) + \mathrm{x{1 7 0 3}}\left( t \right) + \mathrm{x{1 7 0 5}}\left( t \right) + \mathrm{x{1 7 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 4}}\left( t \right) \ \frac{dx{1 7 0 5}(t)}{dt} =& \alpha1 \mathrm{x{6 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 5}}\left( t \right) + \mathrm{x{1 6 7 3}}\left( t \right) + \mathrm{x{1 7 0 4}}\left( t \right) + \mathrm{x{1 7 0 6}}\left( t \right) + \mathrm{x{1 7 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 5}}\left( t \right) \ \frac{dx{1 7 0 6}(t)}{dt} =& \alpha1 \mathrm{x{6 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 6}}\left( t \right) + \mathrm{x{1 6 7 4}}\left( t \right) + \mathrm{x{1 7 0 5}}\left( t \right) + \mathrm{x{1 7 0 7}}\left( t \right) + \mathrm{x{1 7 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 6}}\left( t \right) \ \frac{dx{1 7 0 7}(t)}{dt} =& \alpha1 \mathrm{x{6 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 7}}\left( t \right) + \mathrm{x{1 6 7 5}}\left( t \right) + \mathrm{x{1 7 0 6}}\left( t \right) + \mathrm{x{1 7 0 8}}\left( t \right) + \mathrm{x{1 7 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 7}}\left( t \right) \ \frac{dx{1 7 0 8}(t)}{dt} =& \alpha1 \mathrm{x{6 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 8}}\left( t \right) + \mathrm{x{1 6 7 6}}\left( t \right) + \mathrm{x{1 7 0 7}}\left( t \right) + \mathrm{x{1 7 0 9}}\left( t \right) + \mathrm{x{1 7 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 8}}\left( t \right) \ \frac{dx{1 7 0 9}(t)}{dt} =& \alpha1 \mathrm{x{6 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 0 9}}\left( t \right) + \mathrm{x{1 6 7 7}}\left( t \right) + \mathrm{x{1 7 0 8}}\left( t \right) + \mathrm{x{1 7 1 0}}\left( t \right) + \mathrm{x{1 7 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 0 9}}\left( t \right) \ \frac{dx{1 7 1 0}(t)}{dt} =& \alpha1 \mathrm{x{6 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 0}}\left( t \right) + \mathrm{x{1 6 7 8}}\left( t \right) + \mathrm{x{1 7 0 9}}\left( t \right) + \mathrm{x{1 7 1 1}}\left( t \right) + \mathrm{x{1 7 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 0}}\left( t \right) \ \frac{dx{1 7 1 1}(t)}{dt} =& \alpha1 \mathrm{x{6 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 1}}\left( t \right) + \mathrm{x{1 6 7 9}}\left( t \right) + \mathrm{x{1 7 1 0}}\left( t \right) + \mathrm{x{1 7 1 2}}\left( t \right) + \mathrm{x{1 7 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 1}}\left( t \right) \ \frac{dx{1 7 1 2}(t)}{dt} =& \alpha1 \mathrm{x{6 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 2}}\left( t \right) + \mathrm{x{1 6 8 0}}\left( t \right) + \mathrm{x{1 7 1 1}}\left( t \right) + \mathrm{x{1 7 1 3}}\left( t \right) + \mathrm{x{1 7 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 2}}\left( t \right) \ \frac{dx{1 7 1 3}(t)}{dt} =& \alpha1 \mathrm{x{6 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 3}}\left( t \right) + \mathrm{x{1 6 8 1}}\left( t \right) + \mathrm{x{1 7 1 2}}\left( t \right) + \mathrm{x{1 7 1 4}}\left( t \right) + \mathrm{x{1 7 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 3}}\left( t \right) \ \frac{dx{1 7 1 4}(t)}{dt} =& \alpha1 \mathrm{x{6 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 4}}\left( t \right) + \mathrm{x{1 6 8 2}}\left( t \right) + \mathrm{x{1 7 1 3}}\left( t \right) + \mathrm{x{1 7 1 5}}\left( t \right) + \mathrm{x{1 7 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 4}}\left( t \right) \ \frac{dx{1 7 1 5}(t)}{dt} =& \alpha1 \mathrm{x{6 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 5}}\left( t \right) + \mathrm{x{1 6 8 3}}\left( t \right) + \mathrm{x{1 7 1 4}}\left( t \right) + \mathrm{x{1 7 1 6}}\left( t \right) + \mathrm{x{1 7 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 5}}\left( t \right) \ \frac{dx{1 7 1 6}(t)}{dt} =& \alpha1 \mathrm{x{6 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 6}}\left( t \right) + \mathrm{x{1 6 8 4}}\left( t \right) + \mathrm{x{1 7 1 5}}\left( t \right) + \mathrm{x{1 7 1 7}}\left( t \right) + \mathrm{x{1 7 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 6}}\left( t \right) \ \frac{dx{1 7 1 7}(t)}{dt} =& \alpha1 \mathrm{x{6 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 7}}\left( t \right) + \mathrm{x{1 6 8 5}}\left( t \right) + \mathrm{x{1 7 1 6}}\left( t \right) + \mathrm{x{1 7 1 8}}\left( t \right) + \mathrm{x{1 7 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 7}}\left( t \right) \ \frac{dx{1 7 1 8}(t)}{dt} =& \alpha1 \mathrm{x{6 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 8}}\left( t \right) + \mathrm{x{1 6 8 6}}\left( t \right) + \mathrm{x{1 7 1 7}}\left( t \right) + \mathrm{x{1 7 1 9}}\left( t \right) + \mathrm{x{1 7 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 8}}\left( t \right) \ \frac{dx{1 7 1 9}(t)}{dt} =& \alpha1 \mathrm{x{6 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 1 9}}\left( t \right) + \mathrm{x{1 6 8 7}}\left( t \right) + \mathrm{x{1 7 1 8}}\left( t \right) + \mathrm{x{1 7 2 0}}\left( t \right) + \mathrm{x{1 7 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 1 9}}\left( t \right) \ \frac{dx{1 7 2 0}(t)}{dt} =& \alpha1 \mathrm{x{6 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 0}}\left( t \right) + \mathrm{x{1 6 8 8}}\left( t \right) + \mathrm{x{1 7 1 9}}\left( t \right) + \mathrm{x{1 7 2 1}}\left( t \right) + \mathrm{x{1 7 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 0}}\left( t \right) \ \frac{dx{1 7 2 1}(t)}{dt} =& \alpha1 \mathrm{x{6 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 1}}\left( t \right) + \mathrm{x{1 6 8 9}}\left( t \right) + \mathrm{x{1 7 2 0}}\left( t \right) + \mathrm{x{1 7 2 2}}\left( t \right) + \mathrm{x{1 7 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 1}}\left( t \right) \ \frac{dx{1 7 2 2}(t)}{dt} =& \alpha1 \mathrm{x{6 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 2}}\left( t \right) + \mathrm{x{1 6 9 0}}\left( t \right) + \mathrm{x{1 7 2 1}}\left( t \right) + \mathrm{x{1 7 2 3}}\left( t \right) + \mathrm{x{1 7 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 2}}\left( t \right) \ \frac{dx{1 7 2 3}(t)}{dt} =& \alpha1 \mathrm{x{6 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 3}}\left( t \right) + \mathrm{x{1 6 9 1}}\left( t \right) + \mathrm{x{1 7 2 2}}\left( t \right) + \mathrm{x{1 7 2 4}}\left( t \right) + \mathrm{x{1 7 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{6 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 3}}\left( t \right) \ \frac{dx{1 7 2 4}(t)}{dt} =& \alpha1 \mathrm{x{7 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 4}}\left( t \right) + \mathrm{x{1 6 9 2}}\left( t \right) + \mathrm{x{1 7 2 3}}\left( t \right) + \mathrm{x{1 7 2 5}}\left( t \right) + \mathrm{x{1 7 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 4}}\left( t \right) \ \frac{dx{1 7 2 5}(t)}{dt} =& \alpha1 \mathrm{x{7 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 5}}\left( t \right) + \mathrm{x{1 6 9 3}}\left( t \right) + \mathrm{x{1 7 2 4}}\left( t \right) + \mathrm{x{1 7 2 6}}\left( t \right) + \mathrm{x{1 7 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 5}}\left( t \right) \ \frac{dx{1 7 2 6}(t)}{dt} =& \alpha1 \mathrm{x{7 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 6}}\left( t \right) + \mathrm{x{1 6 9 4}}\left( t \right) + \mathrm{x{1 7 2 5}}\left( t \right) + \mathrm{x{1 7 2 7}}\left( t \right) + \mathrm{x{1 7 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 6}}\left( t \right) \ \frac{dx{1 7 2 7}(t)}{dt} =& \alpha1 \mathrm{x{7 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 7}}\left( t \right) + \mathrm{x{1 6 9 5}}\left( t \right) + \mathrm{x{1 7 2 6}}\left( t \right) + \mathrm{x{1 7 2 8}}\left( t \right) + \mathrm{x{1 7 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 7}}\left( t \right) \ \frac{dx{1 7 2 8}(t)}{dt} =& \alpha1 \mathrm{x{7 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 8}}\left( t \right) + \mathrm{x{1 6 9 6}}\left( t \right) + \mathrm{x{1 6 9 7}}\left( t \right) + \mathrm{x{1 7 2 7}}\left( t \right) + \mathrm{x{1 7 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 8}}\left( t \right) \ \frac{dx{1 7 2 9}(t)}{dt} =& \alpha1 \mathrm{x{7 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 2 9}}\left( t \right) + \mathrm{x{1 6 9 7}}\left( t \right) + \mathrm{x{1 7 3 0}}\left( t \right) + \mathrm{x{1 7 6 0}}\left( t \right) + \mathrm{x{1 7 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 2 9}}\left( t \right) \ \frac{dx{1 7 3 0}(t)}{dt} =& \alpha1 \mathrm{x{7 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 0}}\left( t \right) + \mathrm{x{1 6 9 8}}\left( t \right) + \mathrm{x{1 7 2 9}}\left( t \right) + \mathrm{x{1 7 3 1}}\left( t \right) + \mathrm{x{1 7 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 0}}\left( t \right) \ \frac{dx{1 7 3 1}(t)}{dt} =& \alpha1 \mathrm{x{7 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 1}}\left( t \right) + \mathrm{x{1 6 9 9}}\left( t \right) + \mathrm{x{1 7 3 0}}\left( t \right) + \mathrm{x{1 7 3 2}}\left( t \right) + \mathrm{x{1 7 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 1}}\left( t \right) \ \frac{dx{1 7 3 2}(t)}{dt} =& \alpha1 \mathrm{x{7 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 2}}\left( t \right) + \mathrm{x{1 7 0 0}}\left( t \right) + \mathrm{x{1 7 3 1}}\left( t \right) + \mathrm{x{1 7 3 3}}\left( t \right) + \mathrm{x{1 7 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 2}}\left( t \right) \ \frac{dx{1 7 3 3}(t)}{dt} =& \alpha1 \mathrm{x{7 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 3}}\left( t \right) + \mathrm{x{1 7 0 1}}\left( t \right) + \mathrm{x{1 7 3 2}}\left( t \right) + \mathrm{x{1 7 3 4}}\left( t \right) + \mathrm{x{1 7 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 3}}\left( t \right) \ \frac{dx{1 7 3 4}(t)}{dt} =& \alpha1 \mathrm{x{7 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 4}}\left( t \right) + \mathrm{x{1 7 0 2}}\left( t \right) + \mathrm{x{1 7 3 3}}\left( t \right) + \mathrm{x{1 7 3 5}}\left( t \right) + \mathrm{x{1 7 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 4}}\left( t \right) \ \frac{dx{1 7 3 5}(t)}{dt} =& \alpha1 \mathrm{x{7 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 5}}\left( t \right) + \mathrm{x{1 7 0 3}}\left( t \right) + \mathrm{x{1 7 3 4}}\left( t \right) + \mathrm{x{1 7 3 6}}\left( t \right) + \mathrm{x{1 7 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 5}}\left( t \right) \ \frac{dx{1 7 3 6}(t)}{dt} =& \alpha1 \mathrm{x{7 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 6}}\left( t \right) + \mathrm{x{1 7 0 4}}\left( t \right) + \mathrm{x{1 7 3 5}}\left( t \right) + \mathrm{x{1 7 3 7}}\left( t \right) + \mathrm{x{1 7 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 6}}\left( t \right) \ \frac{dx{1 7 3 7}(t)}{dt} =& \alpha1 \mathrm{x{7 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 7}}\left( t \right) + \mathrm{x{1 7 0 5}}\left( t \right) + \mathrm{x{1 7 3 6}}\left( t \right) + \mathrm{x{1 7 3 8}}\left( t \right) + \mathrm{x{1 7 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 7}}\left( t \right) \ \frac{dx{1 7 3 8}(t)}{dt} =& \alpha1 \mathrm{x{7 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 8}}\left( t \right) + \mathrm{x{1 7 0 6}}\left( t \right) + \mathrm{x{1 7 3 7}}\left( t \right) + \mathrm{x{1 7 3 9}}\left( t \right) + \mathrm{x{1 7 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 8}}\left( t \right) \ \frac{dx{1 7 3 9}(t)}{dt} =& \alpha1 \mathrm{x{7 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 3 9}}\left( t \right) + \mathrm{x{1 7 0 7}}\left( t \right) + \mathrm{x{1 7 3 8}}\left( t \right) + \mathrm{x{1 7 4 0}}\left( t \right) + \mathrm{x{1 7 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 3 9}}\left( t \right) \ \frac{dx{1 7 4 0}(t)}{dt} =& \alpha1 \mathrm{x{7 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 0}}\left( t \right) + \mathrm{x{1 7 0 8}}\left( t \right) + \mathrm{x{1 7 3 9}}\left( t \right) + \mathrm{x{1 7 4 1}}\left( t \right) + \mathrm{x{1 7 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 0}}\left( t \right) \ \frac{dx{1 7 4 1}(t)}{dt} =& \alpha1 \mathrm{x{7 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 1}}\left( t \right) + \mathrm{x{1 7 0 9}}\left( t \right) + \mathrm{x{1 7 4 0}}\left( t \right) + \mathrm{x{1 7 4 2}}\left( t \right) + \mathrm{x{1 7 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 1}}\left( t \right) \ \frac{dx{1 7 4 2}(t)}{dt} =& \alpha1 \mathrm{x{7 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 2}}\left( t \right) + \mathrm{x{1 7 1 0}}\left( t \right) + \mathrm{x{1 7 4 1}}\left( t \right) + \mathrm{x{1 7 4 3}}\left( t \right) + \mathrm{x{1 7 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 2}}\left( t \right) \ \frac{dx{1 7 4 3}(t)}{dt} =& \alpha1 \mathrm{x{7 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 3}}\left( t \right) + \mathrm{x{1 7 1 1}}\left( t \right) + \mathrm{x{1 7 4 2}}\left( t \right) + \mathrm{x{1 7 4 4}}\left( t \right) + \mathrm{x{1 7 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 3}}\left( t \right) \ \frac{dx{1 7 4 4}(t)}{dt} =& \alpha1 \mathrm{x{7 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 4}}\left( t \right) + \mathrm{x{1 7 1 2}}\left( t \right) + \mathrm{x{1 7 4 3}}\left( t \right) + \mathrm{x{1 7 4 5}}\left( t \right) + \mathrm{x{1 7 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 4}}\left( t \right) \ \frac{dx{1 7 4 5}(t)}{dt} =& \alpha1 \mathrm{x{7 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 5}}\left( t \right) + \mathrm{x{1 7 1 3}}\left( t \right) + \mathrm{x{1 7 4 4}}\left( t \right) + \mathrm{x{1 7 4 6}}\left( t \right) + \mathrm{x{1 7 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 5}}\left( t \right) \ \frac{dx{1 7 4 6}(t)}{dt} =& \alpha1 \mathrm{x{7 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 6}}\left( t \right) + \mathrm{x{1 7 1 4}}\left( t \right) + \mathrm{x{1 7 4 5}}\left( t \right) + \mathrm{x{1 7 4 7}}\left( t \right) + \mathrm{x{1 7 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 6}}\left( t \right) \ \frac{dx{1 7 4 7}(t)}{dt} =& \alpha1 \mathrm{x{7 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 7}}\left( t \right) + \mathrm{x{1 7 1 5}}\left( t \right) + \mathrm{x{1 7 4 6}}\left( t \right) + \mathrm{x{1 7 4 8}}\left( t \right) + \mathrm{x{1 7 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 7}}\left( t \right) \ \frac{dx{1 7 4 8}(t)}{dt} =& \alpha1 \mathrm{x{7 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 8}}\left( t \right) + \mathrm{x{1 7 1 6}}\left( t \right) + \mathrm{x{1 7 4 7}}\left( t \right) + \mathrm{x{1 7 4 9}}\left( t \right) + \mathrm{x{1 7 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 8}}\left( t \right) \ \frac{dx{1 7 4 9}(t)}{dt} =& \alpha1 \mathrm{x{7 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 4 9}}\left( t \right) + \mathrm{x{1 7 1 7}}\left( t \right) + \mathrm{x{1 7 4 8}}\left( t \right) + \mathrm{x{1 7 5 0}}\left( t \right) + \mathrm{x{1 7 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 4 9}}\left( t \right) \ \frac{dx{1 7 5 0}(t)}{dt} =& \alpha1 \mathrm{x{7 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 0}}\left( t \right) + \mathrm{x{1 7 1 8}}\left( t \right) + \mathrm{x{1 7 4 9}}\left( t \right) + \mathrm{x{1 7 5 1}}\left( t \right) + \mathrm{x{1 7 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 0}}\left( t \right) \ \frac{dx{1 7 5 1}(t)}{dt} =& \alpha1 \mathrm{x{7 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 1}}\left( t \right) + \mathrm{x{1 7 1 9}}\left( t \right) + \mathrm{x{1 7 5 0}}\left( t \right) + \mathrm{x{1 7 5 2}}\left( t \right) + \mathrm{x{1 7 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 1}}\left( t \right) \ \frac{dx{1 7 5 2}(t)}{dt} =& \alpha1 \mathrm{x{7 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 2}}\left( t \right) + \mathrm{x{1 7 2 0}}\left( t \right) + \mathrm{x{1 7 5 1}}\left( t \right) + \mathrm{x{1 7 5 3}}\left( t \right) + \mathrm{x{1 7 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 2}}\left( t \right) \ \frac{dx{1 7 5 3}(t)}{dt} =& \alpha1 \mathrm{x{7 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 3}}\left( t \right) + \mathrm{x{1 7 2 1}}\left( t \right) + \mathrm{x{1 7 5 2}}\left( t \right) + \mathrm{x{1 7 5 4}}\left( t \right) + \mathrm{x{1 7 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 3}}\left( t \right) \ \frac{dx{1 7 5 4}(t)}{dt} =& \alpha1 \mathrm{x{7 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 4}}\left( t \right) + \mathrm{x{1 7 2 2}}\left( t \right) + \mathrm{x{1 7 5 3}}\left( t \right) + \mathrm{x{1 7 5 5}}\left( t \right) + \mathrm{x{1 7 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 4}}\left( t \right) \ \frac{dx{1 7 5 5}(t)}{dt} =& \alpha1 \mathrm{x{7 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 5}}\left( t \right) + \mathrm{x{1 7 2 3}}\left( t \right) + \mathrm{x{1 7 5 4}}\left( t \right) + \mathrm{x{1 7 5 6}}\left( t \right) + \mathrm{x{1 7 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 5}}\left( t \right) \ \frac{dx{1 7 5 6}(t)}{dt} =& \alpha1 \mathrm{x{7 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 6}}\left( t \right) + \mathrm{x{1 7 2 4}}\left( t \right) + \mathrm{x{1 7 5 5}}\left( t \right) + \mathrm{x{1 7 5 7}}\left( t \right) + \mathrm{x{1 7 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 6}}\left( t \right) \ \frac{dx{1 7 5 7}(t)}{dt} =& \alpha1 \mathrm{x{7 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 7}}\left( t \right) + \mathrm{x{1 7 2 5}}\left( t \right) + \mathrm{x{1 7 5 6}}\left( t \right) + \mathrm{x{1 7 5 8}}\left( t \right) + \mathrm{x{1 7 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 7}}\left( t \right) \ \frac{dx{1 7 5 8}(t)}{dt} =& \alpha1 \mathrm{x{7 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 8}}\left( t \right) + \mathrm{x{1 7 2 6}}\left( t \right) + \mathrm{x{1 7 5 7}}\left( t \right) + \mathrm{x{1 7 5 9}}\left( t \right) + \mathrm{x{1 7 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 8}}\left( t \right) \ \frac{dx{1 7 5 9}(t)}{dt} =& \alpha1 \mathrm{x{7 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 5 9}}\left( t \right) + \mathrm{x{1 7 2 7}}\left( t \right) + \mathrm{x{1 7 5 8}}\left( t \right) + \mathrm{x{1 7 6 0}}\left( t \right) + \mathrm{x{1 7 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 5 9}}\left( t \right) \ \frac{dx{1 7 6 0}(t)}{dt} =& \alpha1 \mathrm{x{7 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 0}}\left( t \right) + \mathrm{x{1 7 2 8}}\left( t \right) + \mathrm{x{1 7 2 9}}\left( t \right) + \mathrm{x{1 7 5 9}}\left( t \right) + \mathrm{x{1 7 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 0}}\left( t \right) \ \frac{dx{1 7 6 1}(t)}{dt} =& \alpha1 \mathrm{x{7 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 1}}\left( t \right) + \mathrm{x{1 7 2 9}}\left( t \right) + \mathrm{x{1 7 6 2}}\left( t \right) + \mathrm{x{1 7 9 2}}\left( t \right) + \mathrm{x{1 7 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 1}}\left( t \right) \ \frac{dx{1 7 6 2}(t)}{dt} =& \alpha1 \mathrm{x{7 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 2}}\left( t \right) + \mathrm{x{1 7 3 0}}\left( t \right) + \mathrm{x{1 7 6 1}}\left( t \right) + \mathrm{x{1 7 6 3}}\left( t \right) + \mathrm{x{1 7 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 2}}\left( t \right) \ \frac{dx{1 7 6 3}(t)}{dt} =& \alpha1 \mathrm{x{7 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 3}}\left( t \right) + \mathrm{x{1 7 3 1}}\left( t \right) + \mathrm{x{1 7 6 2}}\left( t \right) + \mathrm{x{1 7 6 4}}\left( t \right) + \mathrm{x{1 7 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 3}}\left( t \right) \ \frac{dx{1 7 6 4}(t)}{dt} =& \alpha1 \mathrm{x{7 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 4}}\left( t \right) + \mathrm{x{1 7 3 2}}\left( t \right) + \mathrm{x{1 7 6 3}}\left( t \right) + \mathrm{x{1 7 6 5}}\left( t \right) + \mathrm{x{1 7 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 4}}\left( t \right) \ \frac{dx{1 7 6 5}(t)}{dt} =& \alpha1 \mathrm{x{7 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 5}}\left( t \right) + \mathrm{x{1 7 3 3}}\left( t \right) + \mathrm{x{1 7 6 4}}\left( t \right) + \mathrm{x{1 7 6 6}}\left( t \right) + \mathrm{x{1 7 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 5}}\left( t \right) \ \frac{dx{1 7 6 6}(t)}{dt} =& \alpha1 \mathrm{x{7 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 6}}\left( t \right) + \mathrm{x{1 7 3 4}}\left( t \right) + \mathrm{x{1 7 6 5}}\left( t \right) + \mathrm{x{1 7 6 7}}\left( t \right) + \mathrm{x{1 7 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 6}}\left( t \right) \ \frac{dx{1 7 6 7}(t)}{dt} =& \alpha1 \mathrm{x{7 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 7}}\left( t \right) + \mathrm{x{1 7 3 5}}\left( t \right) + \mathrm{x{1 7 6 6}}\left( t \right) + \mathrm{x{1 7 6 8}}\left( t \right) + \mathrm{x{1 7 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 7}}\left( t \right) \ \frac{dx{1 7 6 8}(t)}{dt} =& \alpha1 \mathrm{x{7 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 8}}\left( t \right) + \mathrm{x{1 7 3 6}}\left( t \right) + \mathrm{x{1 7 6 7}}\left( t \right) + \mathrm{x{1 7 6 9}}\left( t \right) + \mathrm{x{1 8 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 8}}\left( t \right) \ \frac{dx{1 7 6 9}(t)}{dt} =& \alpha1 \mathrm{x{7 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 6 9}}\left( t \right) + \mathrm{x{1 7 3 7}}\left( t \right) + \mathrm{x{1 7 6 8}}\left( t \right) + \mathrm{x{1 7 7 0}}\left( t \right) + \mathrm{x{1 8 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 6 9}}\left( t \right) \ \frac{dx{1 7 7 0}(t)}{dt} =& \alpha1 \mathrm{x{7 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 0}}\left( t \right) + \mathrm{x{1 7 3 8}}\left( t \right) + \mathrm{x{1 7 6 9}}\left( t \right) + \mathrm{x{1 7 7 1}}\left( t \right) + \mathrm{x{1 8 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 0}}\left( t \right) \ \frac{dx{1 7 7 1}(t)}{dt} =& \alpha1 \mathrm{x{7 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 1}}\left( t \right) + \mathrm{x{1 7 3 9}}\left( t \right) + \mathrm{x{1 7 7 0}}\left( t \right) + \mathrm{x{1 7 7 2}}\left( t \right) + \mathrm{x{1 8 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 1}}\left( t \right) \ \frac{dx{1 7 7 2}(t)}{dt} =& \alpha1 \mathrm{x{7 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 2}}\left( t \right) + \mathrm{x{1 7 4 0}}\left( t \right) + \mathrm{x{1 7 7 1}}\left( t \right) + \mathrm{x{1 7 7 3}}\left( t \right) + \mathrm{x{1 8 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 2}}\left( t \right) \ \frac{dx{1 7 7 3}(t)}{dt} =& \alpha1 \mathrm{x{7 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 3}}\left( t \right) + \mathrm{x{1 7 4 1}}\left( t \right) + \mathrm{x{1 7 7 2}}\left( t \right) + \mathrm{x{1 7 7 4}}\left( t \right) + \mathrm{x{1 8 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 3}}\left( t \right) \ \frac{dx{1 7 7 4}(t)}{dt} =& \alpha1 \mathrm{x{7 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 4}}\left( t \right) + \mathrm{x{1 7 4 2}}\left( t \right) + \mathrm{x{1 7 7 3}}\left( t \right) + \mathrm{x{1 7 7 5}}\left( t \right) + \mathrm{x{1 8 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 4}}\left( t \right) \ \frac{dx{1 7 7 5}(t)}{dt} =& \alpha1 \mathrm{x{7 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 5}}\left( t \right) + \mathrm{x{1 7 4 3}}\left( t \right) + \mathrm{x{1 7 7 4}}\left( t \right) + \mathrm{x{1 7 7 6}}\left( t \right) + \mathrm{x{1 8 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 5}}\left( t \right) \ \frac{dx{1 7 7 6}(t)}{dt} =& \alpha1 \mathrm{x{7 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 6}}\left( t \right) + \mathrm{x{1 7 4 4}}\left( t \right) + \mathrm{x{1 7 7 5}}\left( t \right) + \mathrm{x{1 7 7 7}}\left( t \right) + \mathrm{x{1 8 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 6}}\left( t \right) \ \frac{dx{1 7 7 7}(t)}{dt} =& \alpha1 \mathrm{x{7 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 7}}\left( t \right) + \mathrm{x{1 7 4 5}}\left( t \right) + \mathrm{x{1 7 7 6}}\left( t \right) + \mathrm{x{1 7 7 8}}\left( t \right) + \mathrm{x{1 8 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 7}}\left( t \right) \ \frac{dx{1 7 7 8}(t)}{dt} =& \alpha1 \mathrm{x{7 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 8}}\left( t \right) + \mathrm{x{1 7 4 6}}\left( t \right) + \mathrm{x{1 7 7 7}}\left( t \right) + \mathrm{x{1 7 7 9}}\left( t \right) + \mathrm{x{1 8 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 8}}\left( t \right) \ \frac{dx{1 7 7 9}(t)}{dt} =& \alpha1 \mathrm{x{7 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 7 9}}\left( t \right) + \mathrm{x{1 7 4 7}}\left( t \right) + \mathrm{x{1 7 7 8}}\left( t \right) + \mathrm{x{1 7 8 0}}\left( t \right) + \mathrm{x{1 8 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 7 9}}\left( t \right) \ \frac{dx{1 7 8 0}(t)}{dt} =& \alpha1 \mathrm{x{7 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 0}}\left( t \right) + \mathrm{x{1 7 4 8}}\left( t \right) + \mathrm{x{1 7 7 9}}\left( t \right) + \mathrm{x{1 7 8 1}}\left( t \right) + \mathrm{x{1 8 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 0}}\left( t \right) \ \frac{dx{1 7 8 1}(t)}{dt} =& \alpha1 \mathrm{x{7 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 1}}\left( t \right) + \mathrm{x{1 7 4 9}}\left( t \right) + \mathrm{x{1 7 8 0}}\left( t \right) + \mathrm{x{1 7 8 2}}\left( t \right) + \mathrm{x{1 8 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 1}}\left( t \right) \ \frac{dx{1 7 8 2}(t)}{dt} =& \alpha1 \mathrm{x{7 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 2}}\left( t \right) + \mathrm{x{1 7 5 0}}\left( t \right) + \mathrm{x{1 7 8 1}}\left( t \right) + \mathrm{x{1 7 8 3}}\left( t \right) + \mathrm{x{1 8 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 2}}\left( t \right) \ \frac{dx{1 7 8 3}(t)}{dt} =& \alpha1 \mathrm{x{7 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 3}}\left( t \right) + \mathrm{x{1 7 5 1}}\left( t \right) + \mathrm{x{1 7 8 2}}\left( t \right) + \mathrm{x{1 7 8 4}}\left( t \right) + \mathrm{x{1 8 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 3}}\left( t \right) \ \frac{dx{1 7 8 4}(t)}{dt} =& \alpha1 \mathrm{x{7 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 4}}\left( t \right) + \mathrm{x{1 7 5 2}}\left( t \right) + \mathrm{x{1 7 8 3}}\left( t \right) + \mathrm{x{1 7 8 5}}\left( t \right) + \mathrm{x{1 8 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 4}}\left( t \right) \ \frac{dx{1 7 8 5}(t)}{dt} =& \alpha1 \mathrm{x{7 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 5}}\left( t \right) + \mathrm{x{1 7 5 3}}\left( t \right) + \mathrm{x{1 7 8 4}}\left( t \right) + \mathrm{x{1 7 8 6}}\left( t \right) + \mathrm{x{1 8 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 5}}\left( t \right) \ \frac{dx{1 7 8 6}(t)}{dt} =& \alpha1 \mathrm{x{7 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 6}}\left( t \right) + \mathrm{x{1 7 5 4}}\left( t \right) + \mathrm{x{1 7 8 5}}\left( t \right) + \mathrm{x{1 7 8 7}}\left( t \right) + \mathrm{x{1 8 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 6}}\left( t \right) \ \frac{dx{1 7 8 7}(t)}{dt} =& \alpha1 \mathrm{x{7 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 7}}\left( t \right) + \mathrm{x{1 7 5 5}}\left( t \right) + \mathrm{x{1 7 8 6}}\left( t \right) + \mathrm{x{1 7 8 8}}\left( t \right) + \mathrm{x{1 8 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 7}}\left( t \right) \ \frac{dx{1 7 8 8}(t)}{dt} =& \alpha1 \mathrm{x{7 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 8}}\left( t \right) + \mathrm{x{1 7 5 6}}\left( t \right) + \mathrm{x{1 7 8 7}}\left( t \right) + \mathrm{x{1 7 8 9}}\left( t \right) + \mathrm{x{1 8 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 8}}\left( t \right) \ \frac{dx{1 7 8 9}(t)}{dt} =& \alpha1 \mathrm{x{7 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 8 9}}\left( t \right) + \mathrm{x{1 7 5 7}}\left( t \right) + \mathrm{x{1 7 8 8}}\left( t \right) + \mathrm{x{1 7 9 0}}\left( t \right) + \mathrm{x{1 8 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 8 9}}\left( t \right) \ \frac{dx{1 7 9 0}(t)}{dt} =& \alpha1 \mathrm{x{7 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 0}}\left( t \right) + \mathrm{x{1 7 5 8}}\left( t \right) + \mathrm{x{1 7 8 9}}\left( t \right) + \mathrm{x{1 7 9 1}}\left( t \right) + \mathrm{x{1 8 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 0}}\left( t \right) \ \frac{dx{1 7 9 1}(t)}{dt} =& \alpha1 \mathrm{x{7 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 1}}\left( t \right) + \mathrm{x{1 7 5 9}}\left( t \right) + \mathrm{x{1 7 9 0}}\left( t \right) + \mathrm{x{1 7 9 2}}\left( t \right) + \mathrm{x{1 8 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 1}}\left( t \right) \ \frac{dx{1 7 9 2}(t)}{dt} =& \alpha1 \mathrm{x{7 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 2}}\left( t \right) + \mathrm{x{1 7 6 0}}\left( t \right) + \mathrm{x{1 7 6 1}}\left( t \right) + \mathrm{x{1 7 9 1}}\left( t \right) + \mathrm{x{1 8 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 2}}\left( t \right) \ \frac{dx{1 7 9 3}(t)}{dt} =& \alpha1 \mathrm{x{7 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 3}}\left( t \right) + \mathrm{x{1 7 6 1}}\left( t \right) + \mathrm{x{1 7 9 4}}\left( t \right) + \mathrm{x{1 8 2 4}}\left( t \right) + \mathrm{x{1 8 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 3}}\left( t \right) \ \frac{dx{1 7 9 4}(t)}{dt} =& \alpha1 \mathrm{x{7 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 4}}\left( t \right) + \mathrm{x{1 7 6 2}}\left( t \right) + \mathrm{x{1 7 9 3}}\left( t \right) + \mathrm{x{1 7 9 5}}\left( t \right) + \mathrm{x{1 8 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 4}}\left( t \right) \ \frac{dx{1 7 9 5}(t)}{dt} =& \alpha1 \mathrm{x{7 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 5}}\left( t \right) + \mathrm{x{1 7 6 3}}\left( t \right) + \mathrm{x{1 7 9 4}}\left( t \right) + \mathrm{x{1 7 9 6}}\left( t \right) + \mathrm{x{1 8 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 5}}\left( t \right) \ \frac{dx{1 7 9 6}(t)}{dt} =& \alpha1 \mathrm{x{7 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 6}}\left( t \right) + \mathrm{x{1 7 6 4}}\left( t \right) + \mathrm{x{1 7 9 5}}\left( t \right) + \mathrm{x{1 7 9 7}}\left( t \right) + \mathrm{x{1 8 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 6}}\left( t \right) \ \frac{dx{1 7 9 7}(t)}{dt} =& \alpha1 \mathrm{x{7 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 7}}\left( t \right) + \mathrm{x{1 7 6 5}}\left( t \right) + \mathrm{x{1 7 9 6}}\left( t \right) + \mathrm{x{1 7 9 8}}\left( t \right) + \mathrm{x{1 8 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 7}}\left( t \right) \ \frac{dx{1 7 9 8}(t)}{dt} =& \alpha1 \mathrm{x{7 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 8}}\left( t \right) + \mathrm{x{1 7 6 6}}\left( t \right) + \mathrm{x{1 7 9 7}}\left( t \right) + \mathrm{x{1 7 9 9}}\left( t \right) + \mathrm{x{1 8 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 8}}\left( t \right) \ \frac{dx{1 7 9 9}(t)}{dt} =& \alpha1 \mathrm{x{7 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 7 9 9}}\left( t \right) + \mathrm{x{1 7 6 7}}\left( t \right) + \mathrm{x{1 7 9 8}}\left( t \right) + \mathrm{x{1 8 0 0}}\left( t \right) + \mathrm{x{1 8 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 7 9 9}}\left( t \right) \ \frac{dx{1 8 0 0}(t)}{dt} =& \alpha1 \mathrm{x{7 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 0}}\left( t \right) + \mathrm{x{1 7 6 8}}\left( t \right) + \mathrm{x{1 7 9 9}}\left( t \right) + \mathrm{x{1 8 0 1}}\left( t \right) + \mathrm{x{1 8 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 0}}\left( t \right) \ \frac{dx{1 8 0 1}(t)}{dt} =& \alpha1 \mathrm{x{7 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 1}}\left( t \right) + \mathrm{x{1 7 6 9}}\left( t \right) + \mathrm{x{1 8 0 0}}\left( t \right) + \mathrm{x{1 8 0 2}}\left( t \right) + \mathrm{x{1 8 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 1}}\left( t \right) \ \frac{dx{1 8 0 2}(t)}{dt} =& \alpha1 \mathrm{x{7 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 2}}\left( t \right) + \mathrm{x{1 7 7 0}}\left( t \right) + \mathrm{x{1 8 0 1}}\left( t \right) + \mathrm{x{1 8 0 3}}\left( t \right) + \mathrm{x{1 8 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 2}}\left( t \right) \ \frac{dx{1 8 0 3}(t)}{dt} =& \alpha1 \mathrm{x{7 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 3}}\left( t \right) + \mathrm{x{1 7 7 1}}\left( t \right) + \mathrm{x{1 8 0 2}}\left( t \right) + \mathrm{x{1 8 0 4}}\left( t \right) + \mathrm{x{1 8 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 3}}\left( t \right) \ \frac{dx{1 8 0 4}(t)}{dt} =& \alpha1 \mathrm{x{7 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 4}}\left( t \right) + \mathrm{x{1 7 7 2}}\left( t \right) + \mathrm{x{1 8 0 3}}\left( t \right) + \mathrm{x{1 8 0 5}}\left( t \right) + \mathrm{x{1 8 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 4}}\left( t \right) \ \frac{dx{1 8 0 5}(t)}{dt} =& \alpha1 \mathrm{x{7 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 5}}\left( t \right) + \mathrm{x{1 7 7 3}}\left( t \right) + \mathrm{x{1 8 0 4}}\left( t \right) + \mathrm{x{1 8 0 6}}\left( t \right) + \mathrm{x{1 8 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 5}}\left( t \right) \ \frac{dx{1 8 0 6}(t)}{dt} =& \alpha1 \mathrm{x{7 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 6}}\left( t \right) + \mathrm{x{1 7 7 4}}\left( t \right) + \mathrm{x{1 8 0 5}}\left( t \right) + \mathrm{x{1 8 0 7}}\left( t \right) + \mathrm{x{1 8 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 6}}\left( t \right) \ \frac{dx{1 8 0 7}(t)}{dt} =& \alpha1 \mathrm{x{7 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 7}}\left( t \right) + \mathrm{x{1 7 7 5}}\left( t \right) + \mathrm{x{1 8 0 6}}\left( t \right) + \mathrm{x{1 8 0 8}}\left( t \right) + \mathrm{x{1 8 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 7}}\left( t \right) \ \frac{dx{1 8 0 8}(t)}{dt} =& \alpha1 \mathrm{x{7 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 8}}\left( t \right) + \mathrm{x{1 7 7 6}}\left( t \right) + \mathrm{x{1 8 0 7}}\left( t \right) + \mathrm{x{1 8 0 9}}\left( t \right) + \mathrm{x{1 8 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 8}}\left( t \right) \ \frac{dx{1 8 0 9}(t)}{dt} =& \alpha1 \mathrm{x{7 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 0 9}}\left( t \right) + \mathrm{x{1 7 7 7}}\left( t \right) + \mathrm{x{1 8 0 8}}\left( t \right) + \mathrm{x{1 8 1 0}}\left( t \right) + \mathrm{x{1 8 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 0 9}}\left( t \right) \ \frac{dx{1 8 1 0}(t)}{dt} =& \alpha1 \mathrm{x{7 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 0}}\left( t \right) + \mathrm{x{1 7 7 8}}\left( t \right) + \mathrm{x{1 8 0 9}}\left( t \right) + \mathrm{x{1 8 1 1}}\left( t \right) + \mathrm{x{1 8 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 0}}\left( t \right) \ \frac{dx{1 8 1 1}(t)}{dt} =& \alpha1 \mathrm{x{7 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 1}}\left( t \right) + \mathrm{x{1 7 7 9}}\left( t \right) + \mathrm{x{1 8 1 0}}\left( t \right) + \mathrm{x{1 8 1 2}}\left( t \right) + \mathrm{x{1 8 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 1}}\left( t \right) \ \frac{dx{1 8 1 2}(t)}{dt} =& \alpha1 \mathrm{x{7 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 2}}\left( t \right) + \mathrm{x{1 7 8 0}}\left( t \right) + \mathrm{x{1 8 1 1}}\left( t \right) + \mathrm{x{1 8 1 3}}\left( t \right) + \mathrm{x{1 8 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 2}}\left( t \right) \ \frac{dx{1 8 1 3}(t)}{dt} =& \alpha1 \mathrm{x{7 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 3}}\left( t \right) + \mathrm{x{1 7 8 1}}\left( t \right) + \mathrm{x{1 8 1 2}}\left( t \right) + \mathrm{x{1 8 1 4}}\left( t \right) + \mathrm{x{1 8 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 3}}\left( t \right) \ \frac{dx{1 8 1 4}(t)}{dt} =& \alpha1 \mathrm{x{7 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 4}}\left( t \right) + \mathrm{x{1 7 8 2}}\left( t \right) + \mathrm{x{1 8 1 3}}\left( t \right) + \mathrm{x{1 8 1 5}}\left( t \right) + \mathrm{x{1 8 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 4}}\left( t \right) \ \frac{dx{1 8 1 5}(t)}{dt} =& \alpha1 \mathrm{x{7 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 5}}\left( t \right) + \mathrm{x{1 7 8 3}}\left( t \right) + \mathrm{x{1 8 1 4}}\left( t \right) + \mathrm{x{1 8 1 6}}\left( t \right) + \mathrm{x{1 8 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 5}}\left( t \right) \ \frac{dx{1 8 1 6}(t)}{dt} =& \alpha1 \mathrm{x{7 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 6}}\left( t \right) + \mathrm{x{1 7 8 4}}\left( t \right) + \mathrm{x{1 8 1 5}}\left( t \right) + \mathrm{x{1 8 1 7}}\left( t \right) + \mathrm{x{1 8 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 6}}\left( t \right) \ \frac{dx{1 8 1 7}(t)}{dt} =& \alpha1 \mathrm{x{7 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 7}}\left( t \right) + \mathrm{x{1 7 8 5}}\left( t \right) + \mathrm{x{1 8 1 6}}\left( t \right) + \mathrm{x{1 8 1 8}}\left( t \right) + \mathrm{x{1 8 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 7}}\left( t \right) \ \frac{dx{1 8 1 8}(t)}{dt} =& \alpha1 \mathrm{x{7 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 8}}\left( t \right) + \mathrm{x{1 7 8 6}}\left( t \right) + \mathrm{x{1 8 1 7}}\left( t \right) + \mathrm{x{1 8 1 9}}\left( t \right) + \mathrm{x{1 8 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 8}}\left( t \right) \ \frac{dx{1 8 1 9}(t)}{dt} =& \alpha1 \mathrm{x{7 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 1 9}}\left( t \right) + \mathrm{x{1 7 8 7}}\left( t \right) + \mathrm{x{1 8 1 8}}\left( t \right) + \mathrm{x{1 8 2 0}}\left( t \right) + \mathrm{x{1 8 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 1 9}}\left( t \right) \ \frac{dx{1 8 2 0}(t)}{dt} =& \alpha1 \mathrm{x{7 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 0}}\left( t \right) + \mathrm{x{1 7 8 8}}\left( t \right) + \mathrm{x{1 8 1 9}}\left( t \right) + \mathrm{x{1 8 2 1}}\left( t \right) + \mathrm{x{1 8 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 0}}\left( t \right) \ \frac{dx{1 8 2 1}(t)}{dt} =& \alpha1 \mathrm{x{7 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 1}}\left( t \right) + \mathrm{x{1 7 8 9}}\left( t \right) + \mathrm{x{1 8 2 0}}\left( t \right) + \mathrm{x{1 8 2 2}}\left( t \right) + \mathrm{x{1 8 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 1}}\left( t \right) \ \frac{dx{1 8 2 2}(t)}{dt} =& \alpha1 \mathrm{x{7 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 2}}\left( t \right) + \mathrm{x{1 7 9 0}}\left( t \right) + \mathrm{x{1 8 2 1}}\left( t \right) + \mathrm{x{1 8 2 3}}\left( t \right) + \mathrm{x{1 8 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 2}}\left( t \right) \ \frac{dx{1 8 2 3}(t)}{dt} =& \alpha1 \mathrm{x{7 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 3}}\left( t \right) + \mathrm{x{1 7 9 1}}\left( t \right) + \mathrm{x{1 8 2 2}}\left( t \right) + \mathrm{x{1 8 2 4}}\left( t \right) + \mathrm{x{1 8 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{7 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 3}}\left( t \right) \ \frac{dx{1 8 2 4}(t)}{dt} =& \alpha1 \mathrm{x{8 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 4}}\left( t \right) + \mathrm{x{1 7 9 2}}\left( t \right) + \mathrm{x{1 7 9 3}}\left( t \right) + \mathrm{x{1 8 2 3}}\left( t \right) + \mathrm{x{1 8 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 4}}\left( t \right) \ \frac{dx{1 8 2 5}(t)}{dt} =& \alpha1 \mathrm{x{8 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 5}}\left( t \right) + \mathrm{x{1 7 9 3}}\left( t \right) + \mathrm{x{1 8 2 6}}\left( t \right) + \mathrm{x{1 8 5 6}}\left( t \right) + \mathrm{x{1 8 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 5}}\left( t \right) \ \frac{dx{1 8 2 6}(t)}{dt} =& \alpha1 \mathrm{x{8 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 6}}\left( t \right) + \mathrm{x{1 7 9 4}}\left( t \right) + \mathrm{x{1 8 2 5}}\left( t \right) + \mathrm{x{1 8 2 7}}\left( t \right) + \mathrm{x{1 8 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 6}}\left( t \right) \ \frac{dx{1 8 2 7}(t)}{dt} =& \alpha1 \mathrm{x{8 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 7}}\left( t \right) + \mathrm{x{1 7 9 5}}\left( t \right) + \mathrm{x{1 8 2 6}}\left( t \right) + \mathrm{x{1 8 2 8}}\left( t \right) + \mathrm{x{1 8 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 7}}\left( t \right) \ \frac{dx{1 8 2 8}(t)}{dt} =& \alpha1 \mathrm{x{8 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 8}}\left( t \right) + \mathrm{x{1 7 9 6}}\left( t \right) + \mathrm{x{1 8 2 7}}\left( t \right) + \mathrm{x{1 8 2 9}}\left( t \right) + \mathrm{x{1 8 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 8}}\left( t \right) \ \frac{dx{1 8 2 9}(t)}{dt} =& \alpha1 \mathrm{x{8 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 2 9}}\left( t \right) + \mathrm{x{1 7 9 7}}\left( t \right) + \mathrm{x{1 8 2 8}}\left( t \right) + \mathrm{x{1 8 3 0}}\left( t \right) + \mathrm{x{1 8 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 2 9}}\left( t \right) \ \frac{dx{1 8 3 0}(t)}{dt} =& \alpha1 \mathrm{x{8 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 0}}\left( t \right) + \mathrm{x{1 7 9 8}}\left( t \right) + \mathrm{x{1 8 2 9}}\left( t \right) + \mathrm{x{1 8 3 1}}\left( t \right) + \mathrm{x{1 8 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 0}}\left( t \right) \ \frac{dx{1 8 3 1}(t)}{dt} =& \alpha1 \mathrm{x{8 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 1}}\left( t \right) + \mathrm{x{1 7 9 9}}\left( t \right) + \mathrm{x{1 8 3 0}}\left( t \right) + \mathrm{x{1 8 3 2}}\left( t \right) + \mathrm{x{1 8 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 1}}\left( t \right) \ \frac{dx{1 8 3 2}(t)}{dt} =& \alpha1 \mathrm{x{8 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 2}}\left( t \right) + \mathrm{x{1 8 0 0}}\left( t \right) + \mathrm{x{1 8 3 1}}\left( t \right) + \mathrm{x{1 8 3 3}}\left( t \right) + \mathrm{x{1 8 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 2}}\left( t \right) \ \frac{dx{1 8 3 3}(t)}{dt} =& \alpha1 \mathrm{x{8 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 3}}\left( t \right) + \mathrm{x{1 8 0 1}}\left( t \right) + \mathrm{x{1 8 3 2}}\left( t \right) + \mathrm{x{1 8 3 4}}\left( t \right) + \mathrm{x{1 8 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 3}}\left( t \right) \ \frac{dx{1 8 3 4}(t)}{dt} =& \alpha1 \mathrm{x{8 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 4}}\left( t \right) + \mathrm{x{1 8 0 2}}\left( t \right) + \mathrm{x{1 8 3 3}}\left( t \right) + \mathrm{x{1 8 3 5}}\left( t \right) + \mathrm{x{1 8 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 4}}\left( t \right) \ \frac{dx{1 8 3 5}(t)}{dt} =& \alpha1 \mathrm{x{8 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 5}}\left( t \right) + \mathrm{x{1 8 0 3}}\left( t \right) + \mathrm{x{1 8 3 4}}\left( t \right) + \mathrm{x{1 8 3 6}}\left( t \right) + \mathrm{x{1 8 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 5}}\left( t \right) \ \frac{dx{1 8 3 6}(t)}{dt} =& \alpha1 \mathrm{x{8 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 6}}\left( t \right) + \mathrm{x{1 8 0 4}}\left( t \right) + \mathrm{x{1 8 3 5}}\left( t \right) + \mathrm{x{1 8 3 7}}\left( t \right) + \mathrm{x{1 8 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 6}}\left( t \right) \ \frac{dx{1 8 3 7}(t)}{dt} =& \alpha1 \mathrm{x{8 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 7}}\left( t \right) + \mathrm{x{1 8 0 5}}\left( t \right) + \mathrm{x{1 8 3 6}}\left( t \right) + \mathrm{x{1 8 3 8}}\left( t \right) + \mathrm{x{1 8 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 7}}\left( t \right) \ \frac{dx{1 8 3 8}(t)}{dt} =& \alpha1 \mathrm{x{8 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 8}}\left( t \right) + \mathrm{x{1 8 0 6}}\left( t \right) + \mathrm{x{1 8 3 7}}\left( t \right) + \mathrm{x{1 8 3 9}}\left( t \right) + \mathrm{x{1 8 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 8}}\left( t \right) \ \frac{dx{1 8 3 9}(t)}{dt} =& \alpha1 \mathrm{x{8 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 3 9}}\left( t \right) + \mathrm{x{1 8 0 7}}\left( t \right) + \mathrm{x{1 8 3 8}}\left( t \right) + \mathrm{x{1 8 4 0}}\left( t \right) + \mathrm{x{1 8 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 3 9}}\left( t \right) \ \frac{dx{1 8 4 0}(t)}{dt} =& \alpha1 \mathrm{x{8 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 0}}\left( t \right) + \mathrm{x{1 8 0 8}}\left( t \right) + \mathrm{x{1 8 3 9}}\left( t \right) + \mathrm{x{1 8 4 1}}\left( t \right) + \mathrm{x{1 8 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 0}}\left( t \right) \ \frac{dx{1 8 4 1}(t)}{dt} =& \alpha1 \mathrm{x{8 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 1}}\left( t \right) + \mathrm{x{1 8 0 9}}\left( t \right) + \mathrm{x{1 8 4 0}}\left( t \right) + \mathrm{x{1 8 4 2}}\left( t \right) + \mathrm{x{1 8 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 1}}\left( t \right) \ \frac{dx{1 8 4 2}(t)}{dt} =& \alpha1 \mathrm{x{8 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 2}}\left( t \right) + \mathrm{x{1 8 1 0}}\left( t \right) + \mathrm{x{1 8 4 1}}\left( t \right) + \mathrm{x{1 8 4 3}}\left( t \right) + \mathrm{x{1 8 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 2}}\left( t \right) \ \frac{dx{1 8 4 3}(t)}{dt} =& \alpha1 \mathrm{x{8 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 3}}\left( t \right) + \mathrm{x{1 8 1 1}}\left( t \right) + \mathrm{x{1 8 4 2}}\left( t \right) + \mathrm{x{1 8 4 4}}\left( t \right) + \mathrm{x{1 8 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 3}}\left( t \right) \ \frac{dx{1 8 4 4}(t)}{dt} =& \alpha1 \mathrm{x{8 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 4}}\left( t \right) + \mathrm{x{1 8 1 2}}\left( t \right) + \mathrm{x{1 8 4 3}}\left( t \right) + \mathrm{x{1 8 4 5}}\left( t \right) + \mathrm{x{1 8 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 4}}\left( t \right) \ \frac{dx{1 8 4 5}(t)}{dt} =& \alpha1 \mathrm{x{8 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 5}}\left( t \right) + \mathrm{x{1 8 1 3}}\left( t \right) + \mathrm{x{1 8 4 4}}\left( t \right) + \mathrm{x{1 8 4 6}}\left( t \right) + \mathrm{x{1 8 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 5}}\left( t \right) \ \frac{dx{1 8 4 6}(t)}{dt} =& \alpha1 \mathrm{x{8 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 6}}\left( t \right) + \mathrm{x{1 8 1 4}}\left( t \right) + \mathrm{x{1 8 4 5}}\left( t \right) + \mathrm{x{1 8 4 7}}\left( t \right) + \mathrm{x{1 8 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 6}}\left( t \right) \ \frac{dx{1 8 4 7}(t)}{dt} =& \alpha1 \mathrm{x{8 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 7}}\left( t \right) + \mathrm{x{1 8 1 5}}\left( t \right) + \mathrm{x{1 8 4 6}}\left( t \right) + \mathrm{x{1 8 4 8}}\left( t \right) + \mathrm{x{1 8 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 7}}\left( t \right) \ \frac{dx{1 8 4 8}(t)}{dt} =& \alpha1 \mathrm{x{8 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 8}}\left( t \right) + \mathrm{x{1 8 1 6}}\left( t \right) + \mathrm{x{1 8 4 7}}\left( t \right) + \mathrm{x{1 8 4 9}}\left( t \right) + \mathrm{x{1 8 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 8}}\left( t \right) \ \frac{dx{1 8 4 9}(t)}{dt} =& \alpha1 \mathrm{x{8 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 4 9}}\left( t \right) + \mathrm{x{1 8 1 7}}\left( t \right) + \mathrm{x{1 8 4 8}}\left( t \right) + \mathrm{x{1 8 5 0}}\left( t \right) + \mathrm{x{1 8 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 4 9}}\left( t \right) \ \frac{dx{1 8 5 0}(t)}{dt} =& \alpha1 \mathrm{x{8 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 0}}\left( t \right) + \mathrm{x{1 8 1 8}}\left( t \right) + \mathrm{x{1 8 4 9}}\left( t \right) + \mathrm{x{1 8 5 1}}\left( t \right) + \mathrm{x{1 8 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 0}}\left( t \right) \ \frac{dx{1 8 5 1}(t)}{dt} =& \alpha1 \mathrm{x{8 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 1}}\left( t \right) + \mathrm{x{1 8 1 9}}\left( t \right) + \mathrm{x{1 8 5 0}}\left( t \right) + \mathrm{x{1 8 5 2}}\left( t \right) + \mathrm{x{1 8 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 1}}\left( t \right) \ \frac{dx{1 8 5 2}(t)}{dt} =& \alpha1 \mathrm{x{8 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 2}}\left( t \right) + \mathrm{x{1 8 2 0}}\left( t \right) + \mathrm{x{1 8 5 1}}\left( t \right) + \mathrm{x{1 8 5 3}}\left( t \right) + \mathrm{x{1 8 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 2}}\left( t \right) \ \frac{dx{1 8 5 3}(t)}{dt} =& \alpha1 \mathrm{x{8 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 3}}\left( t \right) + \mathrm{x{1 8 2 1}}\left( t \right) + \mathrm{x{1 8 5 2}}\left( t \right) + \mathrm{x{1 8 5 4}}\left( t \right) + \mathrm{x{1 8 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 3}}\left( t \right) \ \frac{dx{1 8 5 4}(t)}{dt} =& \alpha1 \mathrm{x{8 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 4}}\left( t \right) + \mathrm{x{1 8 2 2}}\left( t \right) + \mathrm{x{1 8 5 3}}\left( t \right) + \mathrm{x{1 8 5 5}}\left( t \right) + \mathrm{x{1 8 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 4}}\left( t \right) \ \frac{dx{1 8 5 5}(t)}{dt} =& \alpha1 \mathrm{x{8 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 5}}\left( t \right) + \mathrm{x{1 8 2 3}}\left( t \right) + \mathrm{x{1 8 5 4}}\left( t \right) + \mathrm{x{1 8 5 6}}\left( t \right) + \mathrm{x{1 8 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 5}}\left( t \right) \ \frac{dx{1 8 5 6}(t)}{dt} =& \alpha1 \mathrm{x{8 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 6}}\left( t \right) + \mathrm{x{1 8 2 4}}\left( t \right) + \mathrm{x{1 8 2 5}}\left( t \right) + \mathrm{x{1 8 5 5}}\left( t \right) + \mathrm{x{1 8 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 6}}\left( t \right) \ \frac{dx{1 8 5 7}(t)}{dt} =& \alpha1 \mathrm{x{8 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 7}}\left( t \right) + \mathrm{x{1 8 2 5}}\left( t \right) + \mathrm{x{1 8 5 8}}\left( t \right) + \mathrm{x{1 8 8 8}}\left( t \right) + \mathrm{x{1 8 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 7}}\left( t \right) \ \frac{dx{1 8 5 8}(t)}{dt} =& \alpha1 \mathrm{x{8 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 8}}\left( t \right) + \mathrm{x{1 8 2 6}}\left( t \right) + \mathrm{x{1 8 5 7}}\left( t \right) + \mathrm{x{1 8 5 9}}\left( t \right) + \mathrm{x{1 8 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 8}}\left( t \right) \ \frac{dx{1 8 5 9}(t)}{dt} =& \alpha1 \mathrm{x{8 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 5 9}}\left( t \right) + \mathrm{x{1 8 2 7}}\left( t \right) + \mathrm{x{1 8 5 8}}\left( t \right) + \mathrm{x{1 8 6 0}}\left( t \right) + \mathrm{x{1 8 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 5 9}}\left( t \right) \ \frac{dx{1 8 6 0}(t)}{dt} =& \alpha1 \mathrm{x{8 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 0}}\left( t \right) + \mathrm{x{1 8 2 8}}\left( t \right) + \mathrm{x{1 8 5 9}}\left( t \right) + \mathrm{x{1 8 6 1}}\left( t \right) + \mathrm{x{1 8 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 0}}\left( t \right) \ \frac{dx{1 8 6 1}(t)}{dt} =& \alpha1 \mathrm{x{8 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 1}}\left( t \right) + \mathrm{x{1 8 2 9}}\left( t \right) + \mathrm{x{1 8 6 0}}\left( t \right) + \mathrm{x{1 8 6 2}}\left( t \right) + \mathrm{x{1 8 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 1}}\left( t \right) \ \frac{dx{1 8 6 2}(t)}{dt} =& \alpha1 \mathrm{x{8 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 2}}\left( t \right) + \mathrm{x{1 8 3 0}}\left( t \right) + \mathrm{x{1 8 6 1}}\left( t \right) + \mathrm{x{1 8 6 3}}\left( t \right) + \mathrm{x{1 8 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 2}}\left( t \right) \ \frac{dx{1 8 6 3}(t)}{dt} =& \alpha1 \mathrm{x{8 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 3}}\left( t \right) + \mathrm{x{1 8 3 1}}\left( t \right) + \mathrm{x{1 8 6 2}}\left( t \right) + \mathrm{x{1 8 6 4}}\left( t \right) + \mathrm{x{1 8 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 3}}\left( t \right) \ \frac{dx{1 8 6 4}(t)}{dt} =& \alpha1 \mathrm{x{8 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 4}}\left( t \right) + \mathrm{x{1 8 3 2}}\left( t \right) + \mathrm{x{1 8 6 3}}\left( t \right) + \mathrm{x{1 8 6 5}}\left( t \right) + \mathrm{x{1 8 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 4}}\left( t \right) \ \frac{dx{1 8 6 5}(t)}{dt} =& \alpha1 \mathrm{x{8 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 5}}\left( t \right) + \mathrm{x{1 8 3 3}}\left( t \right) + \mathrm{x{1 8 6 4}}\left( t \right) + \mathrm{x{1 8 6 6}}\left( t \right) + \mathrm{x{1 8 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 5}}\left( t \right) \ \frac{dx{1 8 6 6}(t)}{dt} =& \alpha1 \mathrm{x{8 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 6}}\left( t \right) + \mathrm{x{1 8 3 4}}\left( t \right) + \mathrm{x{1 8 6 5}}\left( t \right) + \mathrm{x{1 8 6 7}}\left( t \right) + \mathrm{x{1 8 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 6}}\left( t \right) \ \frac{dx{1 8 6 7}(t)}{dt} =& \alpha1 \mathrm{x{8 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 7}}\left( t \right) + \mathrm{x{1 8 3 5}}\left( t \right) + \mathrm{x{1 8 6 6}}\left( t \right) + \mathrm{x{1 8 6 8}}\left( t \right) + \mathrm{x{1 8 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 7}}\left( t \right) \ \frac{dx{1 8 6 8}(t)}{dt} =& \alpha1 \mathrm{x{8 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 8}}\left( t \right) + \mathrm{x{1 8 3 6}}\left( t \right) + \mathrm{x{1 8 6 7}}\left( t \right) + \mathrm{x{1 8 6 9}}\left( t \right) + \mathrm{x{1 9 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 8}}\left( t \right) \ \frac{dx{1 8 6 9}(t)}{dt} =& \alpha1 \mathrm{x{8 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 6 9}}\left( t \right) + \mathrm{x{1 8 3 7}}\left( t \right) + \mathrm{x{1 8 6 8}}\left( t \right) + \mathrm{x{1 8 7 0}}\left( t \right) + \mathrm{x{1 9 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 6 9}}\left( t \right) \ \frac{dx{1 8 7 0}(t)}{dt} =& \alpha1 \mathrm{x{8 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 0}}\left( t \right) + \mathrm{x{1 8 3 8}}\left( t \right) + \mathrm{x{1 8 6 9}}\left( t \right) + \mathrm{x{1 8 7 1}}\left( t \right) + \mathrm{x{1 9 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 0}}\left( t \right) \ \frac{dx{1 8 7 1}(t)}{dt} =& \alpha1 \mathrm{x{8 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 1}}\left( t \right) + \mathrm{x{1 8 3 9}}\left( t \right) + \mathrm{x{1 8 7 0}}\left( t \right) + \mathrm{x{1 8 7 2}}\left( t \right) + \mathrm{x{1 9 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 1}}\left( t \right) \ \frac{dx{1 8 7 2}(t)}{dt} =& \alpha1 \mathrm{x{8 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 2}}\left( t \right) + \mathrm{x{1 8 4 0}}\left( t \right) + \mathrm{x{1 8 7 1}}\left( t \right) + \mathrm{x{1 8 7 3}}\left( t \right) + \mathrm{x{1 9 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 2}}\left( t \right) \ \frac{dx{1 8 7 3}(t)}{dt} =& \alpha1 \mathrm{x{8 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 3}}\left( t \right) + \mathrm{x{1 8 4 1}}\left( t \right) + \mathrm{x{1 8 7 2}}\left( t \right) + \mathrm{x{1 8 7 4}}\left( t \right) + \mathrm{x{1 9 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 3}}\left( t \right) \ \frac{dx{1 8 7 4}(t)}{dt} =& \alpha1 \mathrm{x{8 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 4}}\left( t \right) + \mathrm{x{1 8 4 2}}\left( t \right) + \mathrm{x{1 8 7 3}}\left( t \right) + \mathrm{x{1 8 7 5}}\left( t \right) + \mathrm{x{1 9 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 4}}\left( t \right) \ \frac{dx{1 8 7 5}(t)}{dt} =& \alpha1 \mathrm{x{8 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 5}}\left( t \right) + \mathrm{x{1 8 4 3}}\left( t \right) + \mathrm{x{1 8 7 4}}\left( t \right) + \mathrm{x{1 8 7 6}}\left( t \right) + \mathrm{x{1 9 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 5}}\left( t \right) \ \frac{dx{1 8 7 6}(t)}{dt} =& \alpha1 \mathrm{x{8 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 6}}\left( t \right) + \mathrm{x{1 8 4 4}}\left( t \right) + \mathrm{x{1 8 7 5}}\left( t \right) + \mathrm{x{1 8 7 7}}\left( t \right) + \mathrm{x{1 9 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 6}}\left( t \right) \ \frac{dx{1 8 7 7}(t)}{dt} =& \alpha1 \mathrm{x{8 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 7}}\left( t \right) + \mathrm{x{1 8 4 5}}\left( t \right) + \mathrm{x{1 8 7 6}}\left( t \right) + \mathrm{x{1 8 7 8}}\left( t \right) + \mathrm{x{1 9 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 7}}\left( t \right) \ \frac{dx{1 8 7 8}(t)}{dt} =& \alpha1 \mathrm{x{8 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 8}}\left( t \right) + \mathrm{x{1 8 4 6}}\left( t \right) + \mathrm{x{1 8 7 7}}\left( t \right) + \mathrm{x{1 8 7 9}}\left( t \right) + \mathrm{x{1 9 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 8}}\left( t \right) \ \frac{dx{1 8 7 9}(t)}{dt} =& \alpha1 \mathrm{x{8 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 7 9}}\left( t \right) + \mathrm{x{1 8 4 7}}\left( t \right) + \mathrm{x{1 8 7 8}}\left( t \right) + \mathrm{x{1 8 8 0}}\left( t \right) + \mathrm{x{1 9 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 7 9}}\left( t \right) \ \frac{dx{1 8 8 0}(t)}{dt} =& \alpha1 \mathrm{x{8 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 0}}\left( t \right) + \mathrm{x{1 8 4 8}}\left( t \right) + \mathrm{x{1 8 7 9}}\left( t \right) + \mathrm{x{1 8 8 1}}\left( t \right) + \mathrm{x{1 9 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 0}}\left( t \right) \ \frac{dx{1 8 8 1}(t)}{dt} =& \alpha1 \mathrm{x{8 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 1}}\left( t \right) + \mathrm{x{1 8 4 9}}\left( t \right) + \mathrm{x{1 8 8 0}}\left( t \right) + \mathrm{x{1 8 8 2}}\left( t \right) + \mathrm{x{1 9 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 1}}\left( t \right) \ \frac{dx{1 8 8 2}(t)}{dt} =& \alpha1 \mathrm{x{8 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 2}}\left( t \right) + \mathrm{x{1 8 5 0}}\left( t \right) + \mathrm{x{1 8 8 1}}\left( t \right) + \mathrm{x{1 8 8 3}}\left( t \right) + \mathrm{x{1 9 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 2}}\left( t \right) \ \frac{dx{1 8 8 3}(t)}{dt} =& \alpha1 \mathrm{x{8 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 3}}\left( t \right) + \mathrm{x{1 8 5 1}}\left( t \right) + \mathrm{x{1 8 8 2}}\left( t \right) + \mathrm{x{1 8 8 4}}\left( t \right) + \mathrm{x{1 9 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 3}}\left( t \right) \ \frac{dx{1 8 8 4}(t)}{dt} =& \alpha1 \mathrm{x{8 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 4}}\left( t \right) + \mathrm{x{1 8 5 2}}\left( t \right) + \mathrm{x{1 8 8 3}}\left( t \right) + \mathrm{x{1 8 8 5}}\left( t \right) + \mathrm{x{1 9 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 4}}\left( t \right) \ \frac{dx{1 8 8 5}(t)}{dt} =& \alpha1 \mathrm{x{8 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 5}}\left( t \right) + \mathrm{x{1 8 5 3}}\left( t \right) + \mathrm{x{1 8 8 4}}\left( t \right) + \mathrm{x{1 8 8 6}}\left( t \right) + \mathrm{x{1 9 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 5}}\left( t \right) \ \frac{dx{1 8 8 6}(t)}{dt} =& \alpha1 \mathrm{x{8 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 6}}\left( t \right) + \mathrm{x{1 8 5 4}}\left( t \right) + \mathrm{x{1 8 8 5}}\left( t \right) + \mathrm{x{1 8 8 7}}\left( t \right) + \mathrm{x{1 9 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 6}}\left( t \right) \ \frac{dx{1 8 8 7}(t)}{dt} =& \alpha1 \mathrm{x{8 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 7}}\left( t \right) + \mathrm{x{1 8 5 5}}\left( t \right) + \mathrm{x{1 8 8 6}}\left( t \right) + \mathrm{x{1 8 8 8}}\left( t \right) + \mathrm{x{1 9 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 7}}\left( t \right) \ \frac{dx{1 8 8 8}(t)}{dt} =& \alpha1 \mathrm{x{8 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 8}}\left( t \right) + \mathrm{x{1 8 5 6}}\left( t \right) + \mathrm{x{1 8 5 7}}\left( t \right) + \mathrm{x{1 8 8 7}}\left( t \right) + \mathrm{x{1 9 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 8}}\left( t \right) \ \frac{dx{1 8 8 9}(t)}{dt} =& \alpha1 \mathrm{x{8 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 8 9}}\left( t \right) + \mathrm{x{1 8 5 7}}\left( t \right) + \mathrm{x{1 8 9 0}}\left( t \right) + \mathrm{x{1 9 2 0}}\left( t \right) + \mathrm{x{1 9 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 8 9}}\left( t \right) \ \frac{dx{1 8 9 0}(t)}{dt} =& \alpha1 \mathrm{x{8 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 0}}\left( t \right) + \mathrm{x{1 8 5 8}}\left( t \right) + \mathrm{x{1 8 8 9}}\left( t \right) + \mathrm{x{1 8 9 1}}\left( t \right) + \mathrm{x{1 9 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 0}}\left( t \right) \ \frac{dx{1 8 9 1}(t)}{dt} =& \alpha1 \mathrm{x{8 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 1}}\left( t \right) + \mathrm{x{1 8 5 9}}\left( t \right) + \mathrm{x{1 8 9 0}}\left( t \right) + \mathrm{x{1 8 9 2}}\left( t \right) + \mathrm{x{1 9 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 1}}\left( t \right) \ \frac{dx{1 8 9 2}(t)}{dt} =& \alpha1 \mathrm{x{8 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 2}}\left( t \right) + \mathrm{x{1 8 6 0}}\left( t \right) + \mathrm{x{1 8 9 1}}\left( t \right) + \mathrm{x{1 8 9 3}}\left( t \right) + \mathrm{x{1 9 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 2}}\left( t \right) \ \frac{dx{1 8 9 3}(t)}{dt} =& \alpha1 \mathrm{x{8 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 3}}\left( t \right) + \mathrm{x{1 8 6 1}}\left( t \right) + \mathrm{x{1 8 9 2}}\left( t \right) + \mathrm{x{1 8 9 4}}\left( t \right) + \mathrm{x{1 9 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 3}}\left( t \right) \ \frac{dx{1 8 9 4}(t)}{dt} =& \alpha1 \mathrm{x{8 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 4}}\left( t \right) + \mathrm{x{1 8 6 2}}\left( t \right) + \mathrm{x{1 8 9 3}}\left( t \right) + \mathrm{x{1 8 9 5}}\left( t \right) + \mathrm{x{1 9 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 4}}\left( t \right) \ \frac{dx{1 8 9 5}(t)}{dt} =& \alpha1 \mathrm{x{8 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 5}}\left( t \right) + \mathrm{x{1 8 6 3}}\left( t \right) + \mathrm{x{1 8 9 4}}\left( t \right) + \mathrm{x{1 8 9 6}}\left( t \right) + \mathrm{x{1 9 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 5}}\left( t \right) \ \frac{dx{1 8 9 6}(t)}{dt} =& \alpha1 \mathrm{x{8 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 6}}\left( t \right) + \mathrm{x{1 8 6 4}}\left( t \right) + \mathrm{x{1 8 9 5}}\left( t \right) + \mathrm{x{1 8 9 7}}\left( t \right) + \mathrm{x{1 9 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 6}}\left( t \right) \ \frac{dx{1 8 9 7}(t)}{dt} =& \alpha1 \mathrm{x{8 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 7}}\left( t \right) + \mathrm{x{1 8 6 5}}\left( t \right) + \mathrm{x{1 8 9 6}}\left( t \right) + \mathrm{x{1 8 9 8}}\left( t \right) + \mathrm{x{1 9 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 7}}\left( t \right) \ \frac{dx{1 8 9 8}(t)}{dt} =& \alpha1 \mathrm{x{8 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 8}}\left( t \right) + \mathrm{x{1 8 6 6}}\left( t \right) + \mathrm{x{1 8 9 7}}\left( t \right) + \mathrm{x{1 8 9 9}}\left( t \right) + \mathrm{x{1 9 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 8}}\left( t \right) \ \frac{dx{1 8 9 9}(t)}{dt} =& \alpha1 \mathrm{x{8 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 8 9 9}}\left( t \right) + \mathrm{x{1 8 6 7}}\left( t \right) + \mathrm{x{1 8 9 8}}\left( t \right) + \mathrm{x{1 9 0 0}}\left( t \right) + \mathrm{x{1 9 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 8 9 9}}\left( t \right) \ \frac{dx{1 9 0 0}(t)}{dt} =& \alpha1 \mathrm{x{8 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 0}}\left( t \right) + \mathrm{x{1 8 6 8}}\left( t \right) + \mathrm{x{1 8 9 9}}\left( t \right) + \mathrm{x{1 9 0 1}}\left( t \right) + \mathrm{x{1 9 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 0}}\left( t \right) \ \frac{dx{1 9 0 1}(t)}{dt} =& \alpha1 \mathrm{x{8 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 1}}\left( t \right) + \mathrm{x{1 8 6 9}}\left( t \right) + \mathrm{x{1 9 0 0}}\left( t \right) + \mathrm{x{1 9 0 2}}\left( t \right) + \mathrm{x{1 9 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 1}}\left( t \right) \ \frac{dx{1 9 0 2}(t)}{dt} =& \alpha1 \mathrm{x{8 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 2}}\left( t \right) + \mathrm{x{1 8 7 0}}\left( t \right) + \mathrm{x{1 9 0 1}}\left( t \right) + \mathrm{x{1 9 0 3}}\left( t \right) + \mathrm{x{1 9 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 2}}\left( t \right) \ \frac{dx{1 9 0 3}(t)}{dt} =& \alpha1 \mathrm{x{8 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 3}}\left( t \right) + \mathrm{x{1 8 7 1}}\left( t \right) + \mathrm{x{1 9 0 2}}\left( t \right) + \mathrm{x{1 9 0 4}}\left( t \right) + \mathrm{x{1 9 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 7 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 3}}\left( t \right) \ \frac{dx{1 9 0 4}(t)}{dt} =& \alpha1 \mathrm{x{8 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 4}}\left( t \right) + \mathrm{x{1 8 7 2}}\left( t \right) + \mathrm{x{1 9 0 3}}\left( t \right) + \mathrm{x{1 9 0 5}}\left( t \right) + \mathrm{x{1 9 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 4}}\left( t \right) \ \frac{dx{1 9 0 5}(t)}{dt} =& \alpha1 \mathrm{x{8 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 5}}\left( t \right) + \mathrm{x{1 8 7 3}}\left( t \right) + \mathrm{x{1 9 0 4}}\left( t \right) + \mathrm{x{1 9 0 6}}\left( t \right) + \mathrm{x{1 9 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 5}}\left( t \right) \ \frac{dx{1 9 0 6}(t)}{dt} =& \alpha1 \mathrm{x{8 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 6}}\left( t \right) + \mathrm{x{1 8 7 4}}\left( t \right) + \mathrm{x{1 9 0 5}}\left( t \right) + \mathrm{x{1 9 0 7}}\left( t \right) + \mathrm{x{1 9 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 6}}\left( t \right) \ \frac{dx{1 9 0 7}(t)}{dt} =& \alpha1 \mathrm{x{8 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 7}}\left( t \right) + \mathrm{x{1 8 7 5}}\left( t \right) + \mathrm{x{1 9 0 6}}\left( t \right) + \mathrm{x{1 9 0 8}}\left( t \right) + \mathrm{x{1 9 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 7}}\left( t \right) \ \frac{dx{1 9 0 8}(t)}{dt} =& \alpha1 \mathrm{x{8 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 8}}\left( t \right) + \mathrm{x{1 8 7 6}}\left( t \right) + \mathrm{x{1 9 0 7}}\left( t \right) + \mathrm{x{1 9 0 9}}\left( t \right) + \mathrm{x{1 9 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 8}}\left( t \right) \ \frac{dx{1 9 0 9}(t)}{dt} =& \alpha1 \mathrm{x{8 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 0 9}}\left( t \right) + \mathrm{x{1 8 7 7}}\left( t \right) + \mathrm{x{1 9 0 8}}\left( t \right) + \mathrm{x{1 9 1 0}}\left( t \right) + \mathrm{x{1 9 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 0 9}}\left( t \right) \ \frac{dx{1 9 1 0}(t)}{dt} =& \alpha1 \mathrm{x{8 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 0}}\left( t \right) + \mathrm{x{1 8 7 8}}\left( t \right) + \mathrm{x{1 9 0 9}}\left( t \right) + \mathrm{x{1 9 1 1}}\left( t \right) + \mathrm{x{1 9 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 0}}\left( t \right) \ \frac{dx{1 9 1 1}(t)}{dt} =& \alpha1 \mathrm{x{8 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 1}}\left( t \right) + \mathrm{x{1 8 7 9}}\left( t \right) + \mathrm{x{1 9 1 0}}\left( t \right) + \mathrm{x{1 9 1 2}}\left( t \right) + \mathrm{x{1 9 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 1}}\left( t \right) \ \frac{dx{1 9 1 2}(t)}{dt} =& \alpha1 \mathrm{x{8 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 2}}\left( t \right) + \mathrm{x{1 8 8 0}}\left( t \right) + \mathrm{x{1 9 1 1}}\left( t \right) + \mathrm{x{1 9 1 3}}\left( t \right) + \mathrm{x{1 9 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 2}}\left( t \right) \ \frac{dx{1 9 1 3}(t)}{dt} =& \alpha1 \mathrm{x{8 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 3}}\left( t \right) + \mathrm{x{1 8 8 1}}\left( t \right) + \mathrm{x{1 9 1 2}}\left( t \right) + \mathrm{x{1 9 1 4}}\left( t \right) + \mathrm{x{1 9 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 8 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 3}}\left( t \right) \ \frac{dx{1 9 1 4}(t)}{dt} =& \alpha1 \mathrm{x{8 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 4}}\left( t \right) + \mathrm{x{1 8 8 2}}\left( t \right) + \mathrm{x{1 9 1 3}}\left( t \right) + \mathrm{x{1 9 1 5}}\left( t \right) + \mathrm{x{1 9 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 4}}\left( t \right) \ \frac{dx{1 9 1 5}(t)}{dt} =& \alpha1 \mathrm{x{8 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 5}}\left( t \right) + \mathrm{x{1 8 8 3}}\left( t \right) + \mathrm{x{1 9 1 4}}\left( t \right) + \mathrm{x{1 9 1 6}}\left( t \right) + \mathrm{x{1 9 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 5}}\left( t \right) \ \frac{dx{1 9 1 6}(t)}{dt} =& \alpha1 \mathrm{x{8 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 6}}\left( t \right) + \mathrm{x{1 8 8 4}}\left( t \right) + \mathrm{x{1 9 1 5}}\left( t \right) + \mathrm{x{1 9 1 7}}\left( t \right) + \mathrm{x{1 9 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 6}}\left( t \right) \ \frac{dx{1 9 1 7}(t)}{dt} =& \alpha1 \mathrm{x{8 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 7}}\left( t \right) + \mathrm{x{1 8 8 5}}\left( t \right) + \mathrm{x{1 9 1 6}}\left( t \right) + \mathrm{x{1 9 1 8}}\left( t \right) + \mathrm{x{1 9 4 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 7}}\left( t \right) \ \frac{dx{1 9 1 8}(t)}{dt} =& \alpha1 \mathrm{x{8 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 8}}\left( t \right) + \mathrm{x{1 8 8 6}}\left( t \right) + \mathrm{x{1 9 1 7}}\left( t \right) + \mathrm{x{1 9 1 9}}\left( t \right) + \mathrm{x{1 9 5 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 8}}\left( t \right) \ \frac{dx{1 9 1 9}(t)}{dt} =& \alpha1 \mathrm{x{8 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 1 9}}\left( t \right) + \mathrm{x{1 8 8 7}}\left( t \right) + \mathrm{x{1 9 1 8}}\left( t \right) + \mathrm{x{1 9 2 0}}\left( t \right) + \mathrm{x{1 9 5 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 1 9}}\left( t \right) \ \frac{dx{1 9 2 0}(t)}{dt} =& \alpha1 \mathrm{x{8 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 0}}\left( t \right) + \mathrm{x{1 8 8 8}}\left( t \right) + \mathrm{x{1 8 8 9}}\left( t \right) + \mathrm{x{1 9 1 9}}\left( t \right) + \mathrm{x{1 9 5 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 0}}\left( t \right) \ \frac{dx{1 9 2 1}(t)}{dt} =& \alpha1 \mathrm{x{8 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 1}}\left( t \right) + \mathrm{x{1 8 8 9}}\left( t \right) + \mathrm{x{1 9 2 2}}\left( t \right) + \mathrm{x{1 9 5 2}}\left( t \right) + \mathrm{x{1 9 5 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 1}}\left( t \right) \ \frac{dx{1 9 2 2}(t)}{dt} =& \alpha1 \mathrm{x{8 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 2}}\left( t \right) + \mathrm{x{1 8 9 0}}\left( t \right) + \mathrm{x{1 9 2 1}}\left( t \right) + \mathrm{x{1 9 2 3}}\left( t \right) + \mathrm{x{1 9 5 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 2}}\left( t \right) \ \frac{dx{1 9 2 3}(t)}{dt} =& \alpha1 \mathrm{x{8 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 3}}\left( t \right) + \mathrm{x{1 8 9 1}}\left( t \right) + \mathrm{x{1 9 2 2}}\left( t \right) + \mathrm{x{1 9 2 4}}\left( t \right) + \mathrm{x{1 9 5 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{8 9 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 3}}\left( t \right) \ \frac{dx{1 9 2 4}(t)}{dt} =& \alpha1 \mathrm{x{9 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 4}}\left( t \right) + \mathrm{x{1 8 9 2}}\left( t \right) + \mathrm{x{1 9 2 3}}\left( t \right) + \mathrm{x{1 9 2 5}}\left( t \right) + \mathrm{x{1 9 5 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 4}}\left( t \right) \ \frac{dx{1 9 2 5}(t)}{dt} =& \alpha1 \mathrm{x{9 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 5}}\left( t \right) + \mathrm{x{1 8 9 3}}\left( t \right) + \mathrm{x{1 9 2 4}}\left( t \right) + \mathrm{x{1 9 2 6}}\left( t \right) + \mathrm{x{1 9 5 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 5}}\left( t \right) \ \frac{dx{1 9 2 6}(t)}{dt} =& \alpha1 \mathrm{x{9 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 6}}\left( t \right) + \mathrm{x{1 8 9 4}}\left( t \right) + \mathrm{x{1 9 2 5}}\left( t \right) + \mathrm{x{1 9 2 7}}\left( t \right) + \mathrm{x{1 9 5 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 6}}\left( t \right) \ \frac{dx{1 9 2 7}(t)}{dt} =& \alpha1 \mathrm{x{9 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 7}}\left( t \right) + \mathrm{x{1 8 9 5}}\left( t \right) + \mathrm{x{1 9 2 6}}\left( t \right) + \mathrm{x{1 9 2 8}}\left( t \right) + \mathrm{x{1 9 5 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 7}}\left( t \right) \ \frac{dx{1 9 2 8}(t)}{dt} =& \alpha1 \mathrm{x{9 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 8}}\left( t \right) + \mathrm{x{1 8 9 6}}\left( t \right) + \mathrm{x{1 9 2 7}}\left( t \right) + \mathrm{x{1 9 2 9}}\left( t \right) + \mathrm{x{1 9 6 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 8}}\left( t \right) \ \frac{dx{1 9 2 9}(t)}{dt} =& \alpha1 \mathrm{x{9 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 2 9}}\left( t \right) + \mathrm{x{1 8 9 7}}\left( t \right) + \mathrm{x{1 9 2 8}}\left( t \right) + \mathrm{x{1 9 3 0}}\left( t \right) + \mathrm{x{1 9 6 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 2 9}}\left( t \right) \ \frac{dx{1 9 3 0}(t)}{dt} =& \alpha1 \mathrm{x{9 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 0}}\left( t \right) + \mathrm{x{1 8 9 8}}\left( t \right) + \mathrm{x{1 9 2 9}}\left( t \right) + \mathrm{x{1 9 3 1}}\left( t \right) + \mathrm{x{1 9 6 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 0}}\left( t \right) \ \frac{dx{1 9 3 1}(t)}{dt} =& \alpha1 \mathrm{x{9 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 1}}\left( t \right) + \mathrm{x{1 8 9 9}}\left( t \right) + \mathrm{x{1 9 3 0}}\left( t \right) + \mathrm{x{1 9 3 2}}\left( t \right) + \mathrm{x{1 9 6 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 1}}\left( t \right) \ \frac{dx{1 9 3 2}(t)}{dt} =& \alpha1 \mathrm{x{9 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 2}}\left( t \right) + \mathrm{x{1 9 0 0}}\left( t \right) + \mathrm{x{1 9 3 1}}\left( t \right) + \mathrm{x{1 9 3 3}}\left( t \right) + \mathrm{x{1 9 6 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 2}}\left( t \right) \ \frac{dx{1 9 3 3}(t)}{dt} =& \alpha1 \mathrm{x{9 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 3}}\left( t \right) + \mathrm{x{1 9 0 1}}\left( t \right) + \mathrm{x{1 9 3 2}}\left( t \right) + \mathrm{x{1 9 3 4}}\left( t \right) + \mathrm{x{1 9 6 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 0 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 3}}\left( t \right) \ \frac{dx{1 9 3 4}(t)}{dt} =& \alpha1 \mathrm{x{9 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 4}}\left( t \right) + \mathrm{x{1 9 0 2}}\left( t \right) + \mathrm{x{1 9 3 3}}\left( t \right) + \mathrm{x{1 9 3 5}}\left( t \right) + \mathrm{x{1 9 6 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 4}}\left( t \right) \ \frac{dx{1 9 3 5}(t)}{dt} =& \alpha1 \mathrm{x{9 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 5}}\left( t \right) + \mathrm{x{1 9 0 3}}\left( t \right) + \mathrm{x{1 9 3 4}}\left( t \right) + \mathrm{x{1 9 3 6}}\left( t \right) + \mathrm{x{1 9 6 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 5}}\left( t \right) \ \frac{dx{1 9 3 6}(t)}{dt} =& \alpha1 \mathrm{x{9 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 6}}\left( t \right) + \mathrm{x{1 9 0 4}}\left( t \right) + \mathrm{x{1 9 3 5}}\left( t \right) + \mathrm{x{1 9 3 7}}\left( t \right) + \mathrm{x{1 9 6 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 6}}\left( t \right) \ \frac{dx{1 9 3 7}(t)}{dt} =& \alpha1 \mathrm{x{9 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 7}}\left( t \right) + \mathrm{x{1 9 0 5}}\left( t \right) + \mathrm{x{1 9 3 6}}\left( t \right) + \mathrm{x{1 9 3 8}}\left( t \right) + \mathrm{x{1 9 6 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 7}}\left( t \right) \ \frac{dx{1 9 3 8}(t)}{dt} =& \alpha1 \mathrm{x{9 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 8}}\left( t \right) + \mathrm{x{1 9 0 6}}\left( t \right) + \mathrm{x{1 9 3 7}}\left( t \right) + \mathrm{x{1 9 3 9}}\left( t \right) + \mathrm{x{1 9 7 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 8}}\left( t \right) \ \frac{dx{1 9 3 9}(t)}{dt} =& \alpha1 \mathrm{x{9 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 3 9}}\left( t \right) + \mathrm{x{1 9 0 7}}\left( t \right) + \mathrm{x{1 9 3 8}}\left( t \right) + \mathrm{x{1 9 4 0}}\left( t \right) + \mathrm{x{1 9 7 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 3 9}}\left( t \right) \ \frac{dx{1 9 4 0}(t)}{dt} =& \alpha1 \mathrm{x{9 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 0}}\left( t \right) + \mathrm{x{1 9 0 8}}\left( t \right) + \mathrm{x{1 9 3 9}}\left( t \right) + \mathrm{x{1 9 4 1}}\left( t \right) + \mathrm{x{1 9 7 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 0}}\left( t \right) \ \frac{dx{1 9 4 1}(t)}{dt} =& \alpha1 \mathrm{x{9 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 1}}\left( t \right) + \mathrm{x{1 9 0 9}}\left( t \right) + \mathrm{x{1 9 4 0}}\left( t \right) + \mathrm{x{1 9 4 2}}\left( t \right) + \mathrm{x{1 9 7 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 1}}\left( t \right) \ \frac{dx{1 9 4 2}(t)}{dt} =& \alpha1 \mathrm{x{9 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 2}}\left( t \right) + \mathrm{x{1 9 1 0}}\left( t \right) + \mathrm{x{1 9 4 1}}\left( t \right) + \mathrm{x{1 9 4 3}}\left( t \right) + \mathrm{x{1 9 7 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 2}}\left( t \right) \ \frac{dx{1 9 4 3}(t)}{dt} =& \alpha1 \mathrm{x{9 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 3}}\left( t \right) + \mathrm{x{1 9 1 1}}\left( t \right) + \mathrm{x{1 9 4 2}}\left( t \right) + \mathrm{x{1 9 4 4}}\left( t \right) + \mathrm{x{1 9 7 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 1 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 3}}\left( t \right) \ \frac{dx{1 9 4 4}(t)}{dt} =& \alpha1 \mathrm{x{9 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 4}}\left( t \right) + \mathrm{x{1 9 1 2}}\left( t \right) + \mathrm{x{1 9 4 3}}\left( t \right) + \mathrm{x{1 9 4 5}}\left( t \right) + \mathrm{x{1 9 7 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 4}}\left( t \right) \ \frac{dx{1 9 4 5}(t)}{dt} =& \alpha1 \mathrm{x{9 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 5}}\left( t \right) + \mathrm{x{1 9 1 3}}\left( t \right) + \mathrm{x{1 9 4 4}}\left( t \right) + \mathrm{x{1 9 4 6}}\left( t \right) + \mathrm{x{1 9 7 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 5}}\left( t \right) \ \frac{dx{1 9 4 6}(t)}{dt} =& \alpha1 \mathrm{x{9 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 6}}\left( t \right) + \mathrm{x{1 9 1 4}}\left( t \right) + \mathrm{x{1 9 4 5}}\left( t \right) + \mathrm{x{1 9 4 7}}\left( t \right) + \mathrm{x{1 9 7 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 6}}\left( t \right) \ \frac{dx{1 9 4 7}(t)}{dt} =& \alpha1 \mathrm{x{9 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 7}}\left( t \right) + \mathrm{x{1 9 1 5}}\left( t \right) + \mathrm{x{1 9 4 6}}\left( t \right) + \mathrm{x{1 9 4 8}}\left( t \right) + \mathrm{x{1 9 7 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 7}}\left( t \right) \ \frac{dx{1 9 4 8}(t)}{dt} =& \alpha1 \mathrm{x{9 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 8}}\left( t \right) + \mathrm{x{1 9 1 6}}\left( t \right) + \mathrm{x{1 9 4 7}}\left( t \right) + \mathrm{x{1 9 4 9}}\left( t \right) + \mathrm{x{1 9 8 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 8}}\left( t \right) \ \frac{dx{1 9 4 9}(t)}{dt} =& \alpha1 \mathrm{x{9 2 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 4 9}}\left( t \right) + \mathrm{x{1 9 1 7}}\left( t \right) + \mathrm{x{1 9 4 8}}\left( t \right) + \mathrm{x{1 9 5 0}}\left( t \right) + \mathrm{x{1 9 8 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 4 9}}\left( t \right) \ \frac{dx{1 9 5 0}(t)}{dt} =& \alpha1 \mathrm{x{9 2 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 0}}\left( t \right) + \mathrm{x{1 9 1 8}}\left( t \right) + \mathrm{x{1 9 4 9}}\left( t \right) + \mathrm{x{1 9 5 1}}\left( t \right) + \mathrm{x{1 9 8 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 0}}\left( t \right) \ \frac{dx{1 9 5 1}(t)}{dt} =& \alpha1 \mathrm{x{9 2 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 1}}\left( t \right) + \mathrm{x{1 9 1 9}}\left( t \right) + \mathrm{x{1 9 5 0}}\left( t \right) + \mathrm{x{1 9 5 2}}\left( t \right) + \mathrm{x{1 9 8 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 1}}\left( t \right) \ \frac{dx{1 9 5 2}(t)}{dt} =& \alpha1 \mathrm{x{9 2 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 2}}\left( t \right) + \mathrm{x{1 9 2 0}}\left( t \right) + \mathrm{x{1 9 2 1}}\left( t \right) + \mathrm{x{1 9 5 1}}\left( t \right) + \mathrm{x{1 9 8 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 2}}\left( t \right) \ \frac{dx{1 9 5 3}(t)}{dt} =& \alpha1 \mathrm{x{9 2 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 3}}\left( t \right) + \mathrm{x{1 9 2 1}}\left( t \right) + \mathrm{x{1 9 5 4}}\left( t \right) + \mathrm{x{1 9 8 4}}\left( t \right) + \mathrm{x{1 9 8 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 2 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 3}}\left( t \right) \ \frac{dx{1 9 5 4}(t)}{dt} =& \alpha1 \mathrm{x{9 3 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 4}}\left( t \right) + \mathrm{x{1 9 2 2}}\left( t \right) + \mathrm{x{1 9 5 3}}\left( t \right) + \mathrm{x{1 9 5 5}}\left( t \right) + \mathrm{x{1 9 8 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 4}}\left( t \right) \ \frac{dx{1 9 5 5}(t)}{dt} =& \alpha1 \mathrm{x{9 3 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 5}}\left( t \right) + \mathrm{x{1 9 2 3}}\left( t \right) + \mathrm{x{1 9 5 4}}\left( t \right) + \mathrm{x{1 9 5 6}}\left( t \right) + \mathrm{x{1 9 8 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 5}}\left( t \right) \ \frac{dx{1 9 5 6}(t)}{dt} =& \alpha1 \mathrm{x{9 3 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 6}}\left( t \right) + \mathrm{x{1 9 2 4}}\left( t \right) + \mathrm{x{1 9 5 5}}\left( t \right) + \mathrm{x{1 9 5 7}}\left( t \right) + \mathrm{x{1 9 8 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 6}}\left( t \right) \ \frac{dx{1 9 5 7}(t)}{dt} =& \alpha1 \mathrm{x{9 3 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 7}}\left( t \right) + \mathrm{x{1 9 2 5}}\left( t \right) + \mathrm{x{1 9 5 6}}\left( t \right) + \mathrm{x{1 9 5 8}}\left( t \right) + \mathrm{x{1 9 8 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 7}}\left( t \right) \ \frac{dx{1 9 5 8}(t)}{dt} =& \alpha1 \mathrm{x{9 3 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 8}}\left( t \right) + \mathrm{x{1 9 2 6}}\left( t \right) + \mathrm{x{1 9 5 7}}\left( t \right) + \mathrm{x{1 9 5 9}}\left( t \right) + \mathrm{x{1 9 9 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 8}}\left( t \right) \ \frac{dx{1 9 5 9}(t)}{dt} =& \alpha1 \mathrm{x{9 3 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 5 9}}\left( t \right) + \mathrm{x{1 9 2 7}}\left( t \right) + \mathrm{x{1 9 5 8}}\left( t \right) + \mathrm{x{1 9 6 0}}\left( t \right) + \mathrm{x{1 9 9 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 5 9}}\left( t \right) \ \frac{dx{1 9 6 0}(t)}{dt} =& \alpha1 \mathrm{x{9 3 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 0}}\left( t \right) + \mathrm{x{1 9 2 8}}\left( t \right) + \mathrm{x{1 9 5 9}}\left( t \right) + \mathrm{x{1 9 6 1}}\left( t \right) + \mathrm{x{1 9 9 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 0}}\left( t \right) \ \frac{dx{1 9 6 1}(t)}{dt} =& \alpha1 \mathrm{x{9 3 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 1}}\left( t \right) + \mathrm{x{1 9 2 9}}\left( t \right) + \mathrm{x{1 9 6 0}}\left( t \right) + \mathrm{x{1 9 6 2}}\left( t \right) + \mathrm{x{1 9 9 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 1}}\left( t \right) \ \frac{dx{1 9 6 2}(t)}{dt} =& \alpha1 \mathrm{x{9 3 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 2}}\left( t \right) + \mathrm{x{1 9 3 0}}\left( t \right) + \mathrm{x{1 9 6 1}}\left( t \right) + \mathrm{x{1 9 6 3}}\left( t \right) + \mathrm{x{1 9 9 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 2}}\left( t \right) \ \frac{dx{1 9 6 3}(t)}{dt} =& \alpha1 \mathrm{x{9 3 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 3}}\left( t \right) + \mathrm{x{1 9 3 1}}\left( t \right) + \mathrm{x{1 9 6 2}}\left( t \right) + \mathrm{x{1 9 6 4}}\left( t \right) + \mathrm{x{1 9 9 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 3 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 3}}\left( t \right) \ \frac{dx{1 9 6 4}(t)}{dt} =& \alpha1 \mathrm{x{9 4 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 4}}\left( t \right) + \mathrm{x{1 9 3 2}}\left( t \right) + \mathrm{x{1 9 6 3}}\left( t \right) + \mathrm{x{1 9 6 5}}\left( t \right) + \mathrm{x{1 9 9 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 4}}\left( t \right) \ \frac{dx{1 9 6 5}(t)}{dt} =& \alpha1 \mathrm{x{9 4 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 5}}\left( t \right) + \mathrm{x{1 9 3 3}}\left( t \right) + \mathrm{x{1 9 6 4}}\left( t \right) + \mathrm{x{1 9 6 6}}\left( t \right) + \mathrm{x{1 9 9 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 5}}\left( t \right) \ \frac{dx{1 9 6 6}(t)}{dt} =& \alpha1 \mathrm{x{9 4 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 6}}\left( t \right) + \mathrm{x{1 9 3 4}}\left( t \right) + \mathrm{x{1 9 6 5}}\left( t \right) + \mathrm{x{1 9 6 7}}\left( t \right) + \mathrm{x{1 9 9 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 6}}\left( t \right) \ \frac{dx{1 9 6 7}(t)}{dt} =& \alpha1 \mathrm{x{9 4 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 7}}\left( t \right) + \mathrm{x{1 9 3 5}}\left( t \right) + \mathrm{x{1 9 6 6}}\left( t \right) + \mathrm{x{1 9 6 8}}\left( t \right) + \mathrm{x{1 9 9 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 7}}\left( t \right) \ \frac{dx{1 9 6 8}(t)}{dt} =& \alpha1 \mathrm{x{9 4 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 8}}\left( t \right) + \mathrm{x{1 9 3 6}}\left( t \right) + \mathrm{x{1 9 6 7}}\left( t \right) + \mathrm{x{1 9 6 9}}\left( t \right) + \mathrm{x{2 0 0 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 8}}\left( t \right) \ \frac{dx{1 9 6 9}(t)}{dt} =& \alpha1 \mathrm{x{9 4 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 6 9}}\left( t \right) + \mathrm{x{1 9 3 7}}\left( t \right) + \mathrm{x{1 9 6 8}}\left( t \right) + \mathrm{x{1 9 7 0}}\left( t \right) + \mathrm{x{2 0 0 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 6 9}}\left( t \right) \ \frac{dx{1 9 7 0}(t)}{dt} =& \alpha1 \mathrm{x{9 4 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 0}}\left( t \right) + \mathrm{x{1 9 3 8}}\left( t \right) + \mathrm{x{1 9 6 9}}\left( t \right) + \mathrm{x{1 9 7 1}}\left( t \right) + \mathrm{x{2 0 0 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 0}}\left( t \right) \ \frac{dx{1 9 7 1}(t)}{dt} =& \alpha1 \mathrm{x{9 4 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 1}}\left( t \right) + \mathrm{x{1 9 3 9}}\left( t \right) + \mathrm{x{1 9 7 0}}\left( t \right) + \mathrm{x{1 9 7 2}}\left( t \right) + \mathrm{x{2 0 0 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 1}}\left( t \right) \ \frac{dx{1 9 7 2}(t)}{dt} =& \alpha1 \mathrm{x{9 4 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 2}}\left( t \right) + \mathrm{x{1 9 4 0}}\left( t \right) + \mathrm{x{1 9 7 1}}\left( t \right) + \mathrm{x{1 9 7 3}}\left( t \right) + \mathrm{x{2 0 0 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 2}}\left( t \right) \ \frac{dx{1 9 7 3}(t)}{dt} =& \alpha1 \mathrm{x{9 4 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 3}}\left( t \right) + \mathrm{x{1 9 4 1}}\left( t \right) + \mathrm{x{1 9 7 2}}\left( t \right) + \mathrm{x{1 9 7 4}}\left( t \right) + \mathrm{x{2 0 0 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 4 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 3}}\left( t \right) \ \frac{dx{1 9 7 4}(t)}{dt} =& \alpha1 \mathrm{x{9 5 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 4}}\left( t \right) + \mathrm{x{1 9 4 2}}\left( t \right) + \mathrm{x{1 9 7 3}}\left( t \right) + \mathrm{x{1 9 7 5}}\left( t \right) + \mathrm{x{2 0 0 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 4}}\left( t \right) \ \frac{dx{1 9 7 5}(t)}{dt} =& \alpha1 \mathrm{x{9 5 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 5}}\left( t \right) + \mathrm{x{1 9 4 3}}\left( t \right) + \mathrm{x{1 9 7 4}}\left( t \right) + \mathrm{x{1 9 7 6}}\left( t \right) + \mathrm{x{2 0 0 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 5}}\left( t \right) \ \frac{dx{1 9 7 6}(t)}{dt} =& \alpha1 \mathrm{x{9 5 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 6}}\left( t \right) + \mathrm{x{1 9 4 4}}\left( t \right) + \mathrm{x{1 9 7 5}}\left( t \right) + \mathrm{x{1 9 7 7}}\left( t \right) + \mathrm{x{2 0 0 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 6}}\left( t \right) \ \frac{dx{1 9 7 7}(t)}{dt} =& \alpha1 \mathrm{x{9 5 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 7}}\left( t \right) + \mathrm{x{1 9 4 5}}\left( t \right) + \mathrm{x{1 9 7 6}}\left( t \right) + \mathrm{x{1 9 7 8}}\left( t \right) + \mathrm{x{2 0 0 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 7}}\left( t \right) \ \frac{dx{1 9 7 8}(t)}{dt} =& \alpha1 \mathrm{x{9 5 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 8}}\left( t \right) + \mathrm{x{1 9 4 6}}\left( t \right) + \mathrm{x{1 9 7 7}}\left( t \right) + \mathrm{x{1 9 7 9}}\left( t \right) + \mathrm{x{2 0 1 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 8}}\left( t \right) \ \frac{dx{1 9 7 9}(t)}{dt} =& \alpha1 \mathrm{x{9 5 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 7 9}}\left( t \right) + \mathrm{x{1 9 4 7}}\left( t \right) + \mathrm{x{1 9 7 8}}\left( t \right) + \mathrm{x{1 9 8 0}}\left( t \right) + \mathrm{x{2 0 1 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 7 9}}\left( t \right) \ \frac{dx{1 9 8 0}(t)}{dt} =& \alpha1 \mathrm{x{9 5 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 0}}\left( t \right) + \mathrm{x{1 9 4 8}}\left( t \right) + \mathrm{x{1 9 7 9}}\left( t \right) + \mathrm{x{1 9 8 1}}\left( t \right) + \mathrm{x{2 0 1 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 0}}\left( t \right) \ \frac{dx{1 9 8 1}(t)}{dt} =& \alpha1 \mathrm{x{9 5 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 1}}\left( t \right) + \mathrm{x{1 9 4 9}}\left( t \right) + \mathrm{x{1 9 8 0}}\left( t \right) + \mathrm{x{1 9 8 2}}\left( t \right) + \mathrm{x{2 0 1 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 1}}\left( t \right) \ \frac{dx{1 9 8 2}(t)}{dt} =& \alpha1 \mathrm{x{9 5 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 2}}\left( t \right) + \mathrm{x{1 9 5 0}}\left( t \right) + \mathrm{x{1 9 8 1}}\left( t \right) + \mathrm{x{1 9 8 3}}\left( t \right) + \mathrm{x{2 0 1 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 2}}\left( t \right) \ \frac{dx{1 9 8 3}(t)}{dt} =& \alpha1 \mathrm{x{9 5 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 3}}\left( t \right) + \mathrm{x{1 9 5 1}}\left( t \right) + \mathrm{x{1 9 8 2}}\left( t \right) + \mathrm{x{1 9 8 4}}\left( t \right) + \mathrm{x{2 0 1 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 5 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 3}}\left( t \right) \ \frac{dx{1 9 8 4}(t)}{dt} =& \alpha1 \mathrm{x{9 6 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 4}}\left( t \right) + \mathrm{x{1 9 5 2}}\left( t \right) + \mathrm{x{1 9 5 3}}\left( t \right) + \mathrm{x{1 9 8 3}}\left( t \right) + \mathrm{x{2 0 1 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 4}}\left( t \right) \ \frac{dx{1 9 8 5}(t)}{dt} =& \alpha1 \mathrm{x{9 6 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 5}}\left( t \right) + \mathrm{x{1 9 5 3}}\left( t \right) + \mathrm{x{1 9 8 6}}\left( t \right) + \mathrm{x{2 0 1 6}}\left( t \right) + \mathrm{x{2 0 1 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 5}}\left( t \right) \ \frac{dx{1 9 8 6}(t)}{dt} =& \alpha1 \mathrm{x{9 6 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 6}}\left( t \right) + \mathrm{x{1 9 5 4}}\left( t \right) + \mathrm{x{1 9 8 5}}\left( t \right) + \mathrm{x{1 9 8 7}}\left( t \right) + \mathrm{x{2 0 1 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 6}}\left( t \right) \ \frac{dx{1 9 8 7}(t)}{dt} =& \alpha1 \mathrm{x{9 6 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 7}}\left( t \right) + \mathrm{x{1 9 5 5}}\left( t \right) + \mathrm{x{1 9 8 6}}\left( t \right) + \mathrm{x{1 9 8 8}}\left( t \right) + \mathrm{x{2 0 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 7}}\left( t \right) \ \frac{dx{1 9 8 8}(t)}{dt} =& \alpha1 \mathrm{x{9 6 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 8}}\left( t \right) + \mathrm{x{1 9 5 6}}\left( t \right) + \mathrm{x{1 9 8 7}}\left( t \right) + \mathrm{x{1 9 8 9}}\left( t \right) + \mathrm{x{2 0 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 8}}\left( t \right) \ \frac{dx{1 9 8 9}(t)}{dt} =& \alpha1 \mathrm{x{9 6 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 8 9}}\left( t \right) + \mathrm{x{1 9 5 7}}\left( t \right) + \mathrm{x{1 9 8 8}}\left( t \right) + \mathrm{x{1 9 9 0}}\left( t \right) + \mathrm{x{2 0 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 8 9}}\left( t \right) \ \frac{dx{1 9 9 0}(t)}{dt} =& \alpha1 \mathrm{x{9 6 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 0}}\left( t \right) + \mathrm{x{1 9 5 8}}\left( t \right) + \mathrm{x{1 9 8 9}}\left( t \right) + \mathrm{x{1 9 9 1}}\left( t \right) + \mathrm{x{2 0 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 6}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 0}}\left( t \right) \ \frac{dx{1 9 9 1}(t)}{dt} =& \alpha1 \mathrm{x{9 6 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 1}}\left( t \right) + \mathrm{x{1 9 5 9}}\left( t \right) + \mathrm{x{1 9 9 0}}\left( t \right) + \mathrm{x{1 9 9 2}}\left( t \right) + \mathrm{x{2 0 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 7}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 1}}\left( t \right) \ \frac{dx{1 9 9 2}(t)}{dt} =& \alpha1 \mathrm{x{9 6 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 2}}\left( t \right) + \mathrm{x{1 9 6 0}}\left( t \right) + \mathrm{x{1 9 9 1}}\left( t \right) + \mathrm{x{1 9 9 3}}\left( t \right) + \mathrm{x{2 0 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 8}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 2}}\left( t \right) \ \frac{dx{1 9 9 3}(t)}{dt} =& \alpha1 \mathrm{x{9 6 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 3}}\left( t \right) + \mathrm{x{1 9 6 1}}\left( t \right) + \mathrm{x{1 9 9 2}}\left( t \right) + \mathrm{x{1 9 9 4}}\left( t \right) + \mathrm{x{2 0 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 6 9}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 3}}\left( t \right) \ \frac{dx{1 9 9 4}(t)}{dt} =& \alpha1 \mathrm{x{9 7 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 4}}\left( t \right) + \mathrm{x{1 9 6 2}}\left( t \right) + \mathrm{x{1 9 9 3}}\left( t \right) + \mathrm{x{1 9 9 5}}\left( t \right) + \mathrm{x{2 0 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 0}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 4}}\left( t \right) \ \frac{dx{1 9 9 5}(t)}{dt} =& \alpha1 \mathrm{x{9 7 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 5}}\left( t \right) + \mathrm{x{1 9 6 3}}\left( t \right) + \mathrm{x{1 9 9 4}}\left( t \right) + \mathrm{x{1 9 9 6}}\left( t \right) + \mathrm{x{2 0 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 1}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 5}}\left( t \right) \ \frac{dx{1 9 9 6}(t)}{dt} =& \alpha1 \mathrm{x{9 7 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 6}}\left( t \right) + \mathrm{x{1 9 6 4}}\left( t \right) + \mathrm{x{1 9 9 5}}\left( t \right) + \mathrm{x{1 9 9 7}}\left( t \right) + \mathrm{x{2 0 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 2}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 6}}\left( t \right) \ \frac{dx{1 9 9 7}(t)}{dt} =& \alpha1 \mathrm{x{9 7 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 7}}\left( t \right) + \mathrm{x{1 9 6 5}}\left( t \right) + \mathrm{x{1 9 9 6}}\left( t \right) + \mathrm{x{1 9 9 8}}\left( t \right) + \mathrm{x{2 0 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 3}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 7}}\left( t \right) \ \frac{dx{1 9 9 8}(t)}{dt} =& \alpha1 \mathrm{x{9 7 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 8}}\left( t \right) + \mathrm{x{1 9 6 6}}\left( t \right) + \mathrm{x{1 9 9 7}}\left( t \right) + \mathrm{x{1 9 9 9}}\left( t \right) + \mathrm{x{2 0 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 4}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 8}}\left( t \right) \ \frac{dx{1 9 9 9}(t)}{dt} =& \alpha1 \mathrm{x{9 7 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{1 9 9 9}}\left( t \right) + \mathrm{x{1 9 6 7}}\left( t \right) + \mathrm{x{1 9 9 8}}\left( t \right) + \mathrm{x{2 0 0 0}}\left( t \right) + \mathrm{x{2 0 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 5}}\left( t \right) \right)^{2} \mathrm{x{1 9 9 9}}\left( t \right) \ \frac{dx{2 0 0 0}(t)}{dt} =& \alpha1 \mathrm{x{9 7 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 0}}\left( t \right) + \mathrm{x{1 9 6 8}}\left( t \right) + \mathrm{x{1 9 9 9}}\left( t \right) + \mathrm{x{2 0 0 1}}\left( t \right) + \mathrm{x{2 0 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 0}}\left( t \right) \ \frac{dx{2 0 0 1}(t)}{dt} =& \alpha1 \mathrm{x{9 7 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 1}}\left( t \right) + \mathrm{x{1 9 6 9}}\left( t \right) + \mathrm{x{2 0 0 0}}\left( t \right) + \mathrm{x{2 0 0 2}}\left( t \right) + \mathrm{x{2 0 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 1}}\left( t \right) \ \frac{dx{2 0 0 2}(t)}{dt} =& \alpha1 \mathrm{x{9 7 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 2}}\left( t \right) + \mathrm{x{1 9 7 0}}\left( t \right) + \mathrm{x{2 0 0 1}}\left( t \right) + \mathrm{x{2 0 0 3}}\left( t \right) + \mathrm{x{2 0 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 2}}\left( t \right) \ \frac{dx{2 0 0 3}(t)}{dt} =& \alpha1 \mathrm{x{9 7 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 3}}\left( t \right) + \mathrm{x{1 9 7 1}}\left( t \right) + \mathrm{x{2 0 0 2}}\left( t \right) + \mathrm{x{2 0 0 4}}\left( t \right) + \mathrm{x{2 0 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 7 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 3}}\left( t \right) \ \frac{dx{2 0 0 4}(t)}{dt} =& \alpha1 \mathrm{x{9 8 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 4}}\left( t \right) + \mathrm{x{1 9 7 2}}\left( t \right) + \mathrm{x{2 0 0 3}}\left( t \right) + \mathrm{x{2 0 0 5}}\left( t \right) + \mathrm{x{2 0 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 4}}\left( t \right) \ \frac{dx{2 0 0 5}(t)}{dt} =& \alpha1 \mathrm{x{9 8 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 5}}\left( t \right) + \mathrm{x{1 9 7 3}}\left( t \right) + \mathrm{x{2 0 0 4}}\left( t \right) + \mathrm{x{2 0 0 6}}\left( t \right) + \mathrm{x{2 0 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 5}}\left( t \right) \ \frac{dx{2 0 0 6}(t)}{dt} =& \alpha1 \mathrm{x{9 8 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 6}}\left( t \right) + \mathrm{x{1 9 7 4}}\left( t \right) + \mathrm{x{2 0 0 5}}\left( t \right) + \mathrm{x{2 0 0 7}}\left( t \right) + \mathrm{x{2 0 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 6}}\left( t \right) \ \frac{dx{2 0 0 7}(t)}{dt} =& \alpha1 \mathrm{x{9 8 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 7}}\left( t \right) + \mathrm{x{1 9 7 5}}\left( t \right) + \mathrm{x{2 0 0 6}}\left( t \right) + \mathrm{x{2 0 0 8}}\left( t \right) + \mathrm{x{2 0 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 7}}\left( t \right) \ \frac{dx{2 0 0 8}(t)}{dt} =& \alpha1 \mathrm{x{9 8 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 8}}\left( t \right) + \mathrm{x{1 9 7 6}}\left( t \right) + \mathrm{x{2 0 0 7}}\left( t \right) + \mathrm{x{2 0 0 9}}\left( t \right) + \mathrm{x{2 0 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 8}}\left( t \right) \ \frac{dx{2 0 0 9}(t)}{dt} =& \alpha1 \mathrm{x{9 8 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 0 9}}\left( t \right) + \mathrm{x{1 9 7 7}}\left( t \right) + \mathrm{x{2 0 0 8}}\left( t \right) + \mathrm{x{2 0 1 0}}\left( t \right) + \mathrm{x{2 0 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 0 9}}\left( t \right) \ \frac{dx{2 0 1 0}(t)}{dt} =& \alpha1 \mathrm{x{9 8 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 0}}\left( t \right) + \mathrm{x{1 9 7 8}}\left( t \right) + \mathrm{x{2 0 0 9}}\left( t \right) + \mathrm{x{2 0 1 1}}\left( t \right) + \mathrm{x{2 0 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 0}}\left( t \right) \ \frac{dx{2 0 1 1}(t)}{dt} =& \alpha1 \mathrm{x{9 8 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 1}}\left( t \right) + \mathrm{x{1 9 7 9}}\left( t \right) + \mathrm{x{2 0 1 0}}\left( t \right) + \mathrm{x{2 0 1 2}}\left( t \right) + \mathrm{x{2 0 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 1}}\left( t \right) \ \frac{dx{2 0 1 2}(t)}{dt} =& \alpha1 \mathrm{x{9 8 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 2}}\left( t \right) + \mathrm{x{1 9 8 0}}\left( t \right) + \mathrm{x{2 0 1 1}}\left( t \right) + \mathrm{x{2 0 1 3}}\left( t \right) + \mathrm{x{2 0 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 2}}\left( t \right) \ \frac{dx{2 0 1 3}(t)}{dt} =& \alpha1 \mathrm{x{9 8 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 3}}\left( t \right) + \mathrm{x{1 9 8 1}}\left( t \right) + \mathrm{x{2 0 1 2}}\left( t \right) + \mathrm{x{2 0 1 4}}\left( t \right) + \mathrm{x{2 0 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 8 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 3}}\left( t \right) \ \frac{dx{2 0 1 4}(t)}{dt} =& \alpha1 \mathrm{x{9 9 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 4}}\left( t \right) + \mathrm{x{1 9 8 2}}\left( t \right) + \mathrm{x{2 0 1 3}}\left( t \right) + \mathrm{x{2 0 1 5}}\left( t \right) + \mathrm{x{2 0 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 4}}\left( t \right) \ \frac{dx{2 0 1 5}(t)}{dt} =& \alpha1 \mathrm{x{9 9 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 5}}\left( t \right) + \mathrm{x{1 9 8 3}}\left( t \right) + \mathrm{x{2 0 1 4}}\left( t \right) + \mathrm{x{2 0 1 6}}\left( t \right) + \mathrm{x{2 0 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 5}}\left( t \right) \ \frac{dx{2 0 1 6}(t)}{dt} =& \alpha1 \mathrm{x{9 9 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 6}}\left( t \right) + \mathrm{x{1 9 8 4}}\left( t \right) + \mathrm{x{1 9 8 5}}\left( t \right) + \mathrm{x{2 0 1 5}}\left( t \right) + \mathrm{x{2 0 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 6}}\left( t \right) \ \frac{dx{2 0 1 7}(t)}{dt} =& \alpha1 \mathrm{x{9 9 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 7}}\left( t \right) + \mathrm{x{1 0 2 5}}\left( t \right) + \mathrm{x{1 9 8 5}}\left( t \right) + \mathrm{x{2 0 1 8}}\left( t \right) + \mathrm{x{2 0 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 7}}\left( t \right) \ \frac{dx{2 0 1 8}(t)}{dt} =& \alpha1 \mathrm{x{9 9 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 8}}\left( t \right) + \mathrm{x{1 0 2 6}}\left( t \right) + \mathrm{x{1 9 8 6}}\left( t \right) + \mathrm{x{2 0 1 7}}\left( t \right) + \mathrm{x{2 0 1 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 8}}\left( t \right) \ \frac{dx{2 0 1 9}(t)}{dt} =& \alpha1 \mathrm{x{9 9 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 1 9}}\left( t \right) + \mathrm{x{1 0 2 7}}\left( t \right) + \mathrm{x{1 9 8 7}}\left( t \right) + \mathrm{x{2 0 1 8}}\left( t \right) + \mathrm{x{2 0 2 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 1 9}}\left( t \right) \ \frac{dx{2 0 2 0}(t)}{dt} =& \alpha1 \mathrm{x{9 9 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 0}}\left( t \right) + \mathrm{x{1 0 2 8}}\left( t \right) + \mathrm{x{1 9 8 8}}\left( t \right) + \mathrm{x{2 0 1 9}}\left( t \right) + \mathrm{x{2 0 2 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 0}}\left( t \right) \ \frac{dx{2 0 2 1}(t)}{dt} =& \alpha1 \mathrm{x{9 9 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 1}}\left( t \right) + \mathrm{x{1 0 2 9}}\left( t \right) + \mathrm{x{1 9 8 9}}\left( t \right) + \mathrm{x{2 0 2 0}}\left( t \right) + \mathrm{x{2 0 2 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 1}}\left( t \right) \ \frac{dx{2 0 2 2}(t)}{dt} =& \alpha1 \mathrm{x{9 9 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 2}}\left( t \right) + \mathrm{x{1 0 3 0}}\left( t \right) + \mathrm{x{1 9 9 0}}\left( t \right) + \mathrm{x{2 0 2 1}}\left( t \right) + \mathrm{x{2 0 2 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 2}}\left( t \right) \ \frac{dx{2 0 2 3}(t)}{dt} =& \alpha1 \mathrm{x{9 9 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 3}}\left( t \right) + \mathrm{x{1 0 3 1}}\left( t \right) + \mathrm{x{1 9 9 1}}\left( t \right) + \mathrm{x{2 0 2 2}}\left( t \right) + \mathrm{x{2 0 2 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{9 9 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 3}}\left( t \right) \ \frac{dx{2 0 2 4}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 4}}\left( t \right) + \mathrm{x{1 0 3 2}}\left( t \right) + \mathrm{x{1 9 9 2}}\left( t \right) + \mathrm{x{2 0 2 3}}\left( t \right) + \mathrm{x{2 0 2 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 4}}\left( t \right) \ \frac{dx{2 0 2 5}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 5}}\left( t \right) + \mathrm{x{1 0 3 3}}\left( t \right) + \mathrm{x{1 9 9 3}}\left( t \right) + \mathrm{x{2 0 2 4}}\left( t \right) + \mathrm{x{2 0 2 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 5}}\left( t \right) \ \frac{dx{2 0 2 6}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 6}}\left( t \right) + \mathrm{x{1 0 3 4}}\left( t \right) + \mathrm{x{1 9 9 4}}\left( t \right) + \mathrm{x{2 0 2 5}}\left( t \right) + \mathrm{x{2 0 2 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 6}}\left( t \right) \ \frac{dx{2 0 2 7}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 7}}\left( t \right) + \mathrm{x{1 0 3 5}}\left( t \right) + \mathrm{x{1 9 9 5}}\left( t \right) + \mathrm{x{2 0 2 6}}\left( t \right) + \mathrm{x{2 0 2 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 7}}\left( t \right) \ \frac{dx{2 0 2 8}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 8}}\left( t \right) + \mathrm{x{1 0 3 6}}\left( t \right) + \mathrm{x{1 9 9 6}}\left( t \right) + \mathrm{x{2 0 2 7}}\left( t \right) + \mathrm{x{2 0 2 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 8}}\left( t \right) \ \frac{dx{2 0 2 9}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 2 9}}\left( t \right) + \mathrm{x{1 0 3 7}}\left( t \right) + \mathrm{x{1 9 9 7}}\left( t \right) + \mathrm{x{2 0 2 8}}\left( t \right) + \mathrm{x{2 0 3 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 2 9}}\left( t \right) \ \frac{dx{2 0 3 0}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 0}}\left( t \right) + \mathrm{x{1 0 3 8}}\left( t \right) + \mathrm{x{1 9 9 8}}\left( t \right) + \mathrm{x{2 0 2 9}}\left( t \right) + \mathrm{x{2 0 3 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 0}}\left( t \right) \ \frac{dx{2 0 3 1}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 1}}\left( t \right) + \mathrm{x{1 0 3 9}}\left( t \right) + \mathrm{x{1 9 9 9}}\left( t \right) + \mathrm{x{2 0 3 0}}\left( t \right) + \mathrm{x{2 0 3 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 1}}\left( t \right) \ \frac{dx{2 0 3 2}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 2}}\left( t \right) + \mathrm{x{1 0 4 0}}\left( t \right) + \mathrm{x{2 0 0 0}}\left( t \right) + \mathrm{x{2 0 3 1}}\left( t \right) + \mathrm{x{2 0 3 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 2}}\left( t \right) \ \frac{dx{2 0 3 3}(t)}{dt} =& \alpha1 \mathrm{x{1 0 0 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 3}}\left( t \right) + \mathrm{x{1 0 4 1}}\left( t \right) + \mathrm{x{2 0 0 1}}\left( t \right) + \mathrm{x{2 0 3 2}}\left( t \right) + \mathrm{x{2 0 3 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 0 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 3}}\left( t \right) \ \frac{dx{2 0 3 4}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 4}}\left( t \right) + \mathrm{x{1 0 4 2}}\left( t \right) + \mathrm{x{2 0 0 2}}\left( t \right) + \mathrm{x{2 0 3 3}}\left( t \right) + \mathrm{x{2 0 3 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 4}}\left( t \right) \ \frac{dx{2 0 3 5}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 5}}\left( t \right) + \mathrm{x{1 0 4 3}}\left( t \right) + \mathrm{x{2 0 0 3}}\left( t \right) + \mathrm{x{2 0 3 4}}\left( t \right) + \mathrm{x{2 0 3 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 5}}\left( t \right) \ \frac{dx{2 0 3 6}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 6}}\left( t \right) + \mathrm{x{1 0 4 4}}\left( t \right) + \mathrm{x{2 0 0 4}}\left( t \right) + \mathrm{x{2 0 3 5}}\left( t \right) + \mathrm{x{2 0 3 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 6}}\left( t \right) \ \frac{dx{2 0 3 7}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 7}}\left( t \right) + \mathrm{x{1 0 4 5}}\left( t \right) + \mathrm{x{2 0 0 5}}\left( t \right) + \mathrm{x{2 0 3 6}}\left( t \right) + \mathrm{x{2 0 3 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 7}}\left( t \right) \ \frac{dx{2 0 3 8}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 8}}\left( t \right) + \mathrm{x{1 0 4 6}}\left( t \right) + \mathrm{x{2 0 0 6}}\left( t \right) + \mathrm{x{2 0 3 7}}\left( t \right) + \mathrm{x{2 0 3 9}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 8}}\left( t \right) \ \frac{dx{2 0 3 9}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 5}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 3 9}}\left( t \right) + \mathrm{x{1 0 4 7}}\left( t \right) + \mathrm{x{2 0 0 7}}\left( t \right) + \mathrm{x{2 0 3 8}}\left( t \right) + \mathrm{x{2 0 4 0}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 5}}\left( t \right) \right)^{2} \mathrm{x{2 0 3 9}}\left( t \right) \ \frac{dx{2 0 4 0}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 6}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 0}}\left( t \right) + \mathrm{x{1 0 4 8}}\left( t \right) + \mathrm{x{2 0 0 8}}\left( t \right) + \mathrm{x{2 0 3 9}}\left( t \right) + \mathrm{x{2 0 4 1}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 6}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 0}}\left( t \right) \ \frac{dx{2 0 4 1}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 7}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 1}}\left( t \right) + \mathrm{x{1 0 4 9}}\left( t \right) + \mathrm{x{2 0 0 9}}\left( t \right) + \mathrm{x{2 0 4 0}}\left( t \right) + \mathrm{x{2 0 4 2}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 7}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 1}}\left( t \right) \ \frac{dx{2 0 4 2}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 8}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 2}}\left( t \right) + \mathrm{x{1 0 5 0}}\left( t \right) + \mathrm{x{2 0 1 0}}\left( t \right) + \mathrm{x{2 0 4 1}}\left( t \right) + \mathrm{x{2 0 4 3}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 8}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 2}}\left( t \right) \ \frac{dx{2 0 4 3}(t)}{dt} =& \alpha1 \mathrm{x{1 0 1 9}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 3}}\left( t \right) + \mathrm{x{1 0 5 1}}\left( t \right) + \mathrm{x{2 0 1 1}}\left( t \right) + \mathrm{x{2 0 4 2}}\left( t \right) + \mathrm{x{2 0 4 4}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 1 9}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 3}}\left( t \right) \ \frac{dx{2 0 4 4}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2 0}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 4}}\left( t \right) + \mathrm{x{1 0 5 2}}\left( t \right) + \mathrm{x{2 0 1 2}}\left( t \right) + \mathrm{x{2 0 4 3}}\left( t \right) + \mathrm{x{2 0 4 5}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2 0}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 4}}\left( t \right) \ \frac{dx{2 0 4 5}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2 1}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 5}}\left( t \right) + \mathrm{x{1 0 5 3}}\left( t \right) + \mathrm{x{2 0 1 3}}\left( t \right) + \mathrm{x{2 0 4 4}}\left( t \right) + \mathrm{x{2 0 4 6}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2 1}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 5}}\left( t \right) \ \frac{dx{2 0 4 6}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2 2}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 6}}\left( t \right) + \mathrm{x{1 0 5 4}}\left( t \right) + \mathrm{x{2 0 1 4}}\left( t \right) + \mathrm{x{2 0 4 5}}\left( t \right) + \mathrm{x{2 0 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2 2}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 6}}\left( t \right) \ \frac{dx{2 0 4 7}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2 3}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 7}}\left( t \right) + \mathrm{x{1 0 5 5}}\left( t \right) + \mathrm{x{2 0 1 5}}\left( t \right) + \mathrm{x{2 0 4 6}}\left( t \right) + \mathrm{x{2 0 4 8}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2 3}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 7}}\left( t \right) \ \frac{dx{2 0 4 8}(t)}{dt} =& \alpha1 \mathrm{x{1 0 2 4}}\left( t \right) + \frac{\alpha3 \left( - 4 \mathrm{x{2 0 4 8}}\left( t \right) + \mathrm{x{1 0 5 6}}\left( t \right) + \mathrm{x{2 0 1 6}}\left( t \right) + \mathrm{x{2 0 1 7}}\left( t \right) + \mathrm{x{2 0 4 7}}\left( t \right) \right)}{\alpha4^{2}} - \left( \mathrm{x{1 0 2 4}}\left( t \right) \right)^{2} \mathrm{x{2 0 4 8}}\left( t \right) \end{align}

Now we regenerate the problem using jac=true for the analytical Jacobian and sparse=true to make it sparse:

sparseprob = ODEProblem(sys,Pair[],(0.,11.5),jac=true,sparse=true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 11.5)
u0: 2048-element Vector{Float64}:
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
⋮
2.2620667554742258
1.9735248771761977
1.665005111992191
1.3433640166822103
1.0172186542655526
0.6977464117458191
0.4003323380813969
0.14892258453196738
0.0

Hard? No! How much did that help?

using BenchmarkTools
@btime solve(prob,save_everystep=false) # 51.714 s (7317 allocations: 70.12 MiB)
@btime solve(sparseprob,save_everystep=false) # 2.880 s (55533 allocations: 885.09 MiB)

Notice though that the analytical solution to the Jacobian can be quite expensive. Thus in some cases we may only want to get the sparsity pattern. In this case, we can simply do:

sparsepatternprob = ODEProblem(sys,Pair[],(0.,11.5),sparse=true)
@btime solve(sparsepatternprob,save_everystep=false) # 2.880 s (55533 allocations: 885.09 MiB)