NonlinearSystem
System Constructors
ModelingToolkit.NonlinearSystem
— Typestruct NonlinearSystem <: ModelingToolkit.AbstractSystem
A nonlinear system of equations.
Fields
eqs
Vector of equations defining the system.
states
Unknown variables.
ps
Parameters.
observed
name
Name: the name of the system
systems
systems: The internal systems
default_u0
default_u0: The default initial conditions to use when initial conditions are not supplied in
ODEProblem
.
default_p
default_p: The default parameters to use when parameters are not supplied in
ODEProblem
.
structure
structure: structural information of the system
Examples
@variables x y z
@parameters σ ρ β
eqs = [0 ~ σ*(y-x),
0 ~ x*(ρ-z)-y,
0 ~ x*y - β*z]
ns = NonlinearSystem(eqs, [x,y,z],[σ,ρ,β])
Composition and Accessor Functions
sys.eqs
orequations(sys)
: The equations that define the nonlinear system.sys.states
orstates(sys)
: The set of states in the nonlinear system.sys.parameters
orparameters(sys)
: The parameters of the nonlinear system.
Transformations
Applicable Calculation and Generation Functions
calculate_jacobian
generate_jacobian
jacobian_sparsity
Problem Constructors
SciMLBase.NonlinearProblem
— Typefunction DiffEqBase.NonlinearProblem{iip}(sys::NonlinearSystem,u0map,
parammap=DiffEqBase.NullParameters();
jac = false, sparse=false,
checkbounds = false,
linenumbers = true, parallel=SerialForm(),
kwargs...) where iip
Generates an NonlinearProblem from a NonlinearSystem and allows for automatically symbolically calculating numerical enhancements.